000837533 001__ 837533
000837533 005__ 20240619091229.0
000837533 0247_ $$2doi$$a10.1088/2058-8585/aa7928
000837533 0247_ $$2ISSN$$a0953-8585
000837533 0247_ $$2ISSN$$a2058-7058
000837533 0247_ $$2WOS$$aWOS:000410630500005
000837533 0247_ $$2Handle$$a2128/15926
000837533 037__ $$aFZJ-2017-06421
000837533 082__ $$a530
000837533 1001_ $$0P:(DE-Juel1)161499$$aBachmann, Bernd$$b0
000837533 245__ $$aAll-inkjet-printed gold microelectrode arrays for extracellular recording of action potentials
000837533 260__ $$aBristol$$bIOP Publ.$$c2017
000837533 3367_ $$2DRIVER$$aarticle
000837533 3367_ $$2DataCite$$aOutput Types/Journal article
000837533 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1511444704_4949
000837533 3367_ $$2BibTeX$$aARTICLE
000837533 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837533 3367_ $$00$$2EndNote$$aJournal Article
000837533 520__ $$aInkjet printing is an attractive method for cost-effective additive manufacturing of electronic devices. Especially for applications where disposable sensor systems are of interest, it is a promising tool since it enables the production of low-cost and flexible devices. In this work, we report the fabrication of a disposable microelectrode array (MEA) using solely inkjet printing technology. The MEAs were fabricated with two different functional inks, a self-made gold ink to print conductive feedlines and electrodes and a polymer-based ink to add a dielectric layer for insulation of the feedlines. We printed different MEA designs of up to 64 electrodes with a minimum lateral spacing of 200 μm and a minimum electrode diameter of ~31 μm. As a proof-of-concept, extracellular recordings of action potentials from cardiomyocyte-like HL-1 cells were performed using the all-printed devices. Furthermore, we stimulated the cells during the recordings with noradrenaline, which led to an increase in the recorded beating frequency of the cells. The results demonstrate the feasibility of inkjet printing gold MEAs for cell-based bioelectronics.
000837533 536__ $$0G:(DE-HGF)POF3-552$$a552 - Engineering Cell Function (POF3-552)$$cPOF3-552$$fPOF III$$x0
000837533 588__ $$aDataset connected to CrossRef
000837533 7001_ $$0P:(DE-Juel1)161548$$aAdly, Nouran$$b1
000837533 7001_ $$0P:(DE-Juel1)140152$$aSchnitker, Jan$$b2
000837533 7001_ $$0P:(DE-Juel1)138367$$aYakushenko, Alexey$$b3
000837533 7001_ $$0P:(DE-HGF)0$$aRinklin, Philipp$$b4
000837533 7001_ $$0P:(DE-Juel1)128713$$aOffenhäusser, Andreas$$b5
000837533 7001_ $$0P:(DE-Juel1)128745$$aWolfrum, Bernhard$$b6$$eCorresponding author
000837533 773__ $$0PERI:(DE-600)2027200-5$$a10.1088/2058-8585/aa7928$$gVol. 2, no. 3, p. 035003 -$$n3$$p035003 -$$tPhysics world$$v2$$x2058-8585$$y2017
000837533 8564_ $$uhttps://juser.fz-juelich.de/record/837533/files/Bachmann_2017_Flex._Print._Electron._2_035003.pdf$$yRestricted
000837533 8564_ $$uhttps://juser.fz-juelich.de/record/837533/files/Bachmann_2017_Flex._Print._Electron._2_035003.pdf?subformat=pdfa$$xpdfa$$yRestricted
000837533 8564_ $$uhttps://juser.fz-juelich.de/record/837533/files/Main-Document_2nd_revision_x.pdf$$yOpenAccess
000837533 8564_ $$uhttps://juser.fz-juelich.de/record/837533/files/Main-Document_2nd_revision_x.gif?subformat=icon$$xicon$$yOpenAccess
000837533 8564_ $$uhttps://juser.fz-juelich.de/record/837533/files/Main-Document_2nd_revision_x.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000837533 8564_ $$uhttps://juser.fz-juelich.de/record/837533/files/Main-Document_2nd_revision_x.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000837533 8564_ $$uhttps://juser.fz-juelich.de/record/837533/files/Main-Document_2nd_revision_x.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000837533 8564_ $$uhttps://juser.fz-juelich.de/record/837533/files/Main-Document_2nd_revision_x.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000837533 909CO $$ooai:juser.fz-juelich.de:837533$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000837533 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161499$$aForschungszentrum Jülich$$b0$$kFZJ
000837533 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)161499$$a ICS-8$$b0
000837533 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161548$$aForschungszentrum Jülich$$b1$$kFZJ
000837533 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)140152$$aForschungszentrum Jülich$$b2$$kFZJ
000837533 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138367$$aForschungszentrum Jülich$$b3$$kFZJ
000837533 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128713$$aForschungszentrum Jülich$$b5$$kFZJ
000837533 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128745$$aForschungszentrum Jülich$$b6$$kFZJ
000837533 9131_ $$0G:(DE-HGF)POF3-552$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vEngineering Cell Function$$x0
000837533 9141_ $$y2017
000837533 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837533 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS WORLD : 2015
000837533 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837533 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837533 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000837533 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000837533 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000837533 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837533 920__ $$lyes
000837533 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x0
000837533 9801_ $$aFullTexts
000837533 980__ $$ajournal
000837533 980__ $$aVDB
000837533 980__ $$aUNRESTRICTED
000837533 980__ $$aI:(DE-Juel1)ICS-8-20110106
000837533 981__ $$aI:(DE-Juel1)IBI-3-20200312