001     837533
005     20240619091229.0
024 7 _ |a 10.1088/2058-8585/aa7928
|2 doi
024 7 _ |a 0953-8585
|2 ISSN
024 7 _ |a 2058-7058
|2 ISSN
024 7 _ |a WOS:000410630500005
|2 WOS
024 7 _ |a 2128/15926
|2 Handle
037 _ _ |a FZJ-2017-06421
082 _ _ |a 530
100 1 _ |a Bachmann, Bernd
|0 P:(DE-Juel1)161499
|b 0
245 _ _ |a All-inkjet-printed gold microelectrode arrays for extracellular recording of action potentials
260 _ _ |a Bristol
|c 2017
|b IOP Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1511444704_4949
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Inkjet printing is an attractive method for cost-effective additive manufacturing of electronic devices. Especially for applications where disposable sensor systems are of interest, it is a promising tool since it enables the production of low-cost and flexible devices. In this work, we report the fabrication of a disposable microelectrode array (MEA) using solely inkjet printing technology. The MEAs were fabricated with two different functional inks, a self-made gold ink to print conductive feedlines and electrodes and a polymer-based ink to add a dielectric layer for insulation of the feedlines. We printed different MEA designs of up to 64 electrodes with a minimum lateral spacing of 200 μm and a minimum electrode diameter of ~31 μm. As a proof-of-concept, extracellular recordings of action potentials from cardiomyocyte-like HL-1 cells were performed using the all-printed devices. Furthermore, we stimulated the cells during the recordings with noradrenaline, which led to an increase in the recorded beating frequency of the cells. The results demonstrate the feasibility of inkjet printing gold MEAs for cell-based bioelectronics.
536 _ _ |a 552 - Engineering Cell Function (POF3-552)
|0 G:(DE-HGF)POF3-552
|c POF3-552
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Adly, Nouran
|0 P:(DE-Juel1)161548
|b 1
700 1 _ |a Schnitker, Jan
|0 P:(DE-Juel1)140152
|b 2
700 1 _ |a Yakushenko, Alexey
|0 P:(DE-Juel1)138367
|b 3
700 1 _ |a Rinklin, Philipp
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Offenhäusser, Andreas
|0 P:(DE-Juel1)128713
|b 5
700 1 _ |a Wolfrum, Bernhard
|0 P:(DE-Juel1)128745
|b 6
|e Corresponding author
773 _ _ |a 10.1088/2058-8585/aa7928
|g Vol. 2, no. 3, p. 035003 -
|0 PERI:(DE-600)2027200-5
|n 3
|p 035003 -
|t Physics world
|v 2
|y 2017
|x 2058-8585
856 4 _ |u https://juser.fz-juelich.de/record/837533/files/Bachmann_2017_Flex._Print._Electron._2_035003.pdf
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/837533/files/Bachmann_2017_Flex._Print._Electron._2_035003.pdf?subformat=pdfa
|y Restricted
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/837533/files/Main-Document_2nd_revision_x.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/837533/files/Main-Document_2nd_revision_x.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/837533/files/Main-Document_2nd_revision_x.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/837533/files/Main-Document_2nd_revision_x.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/837533/files/Main-Document_2nd_revision_x.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/837533/files/Main-Document_2nd_revision_x.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:837533
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161499
910 1 _ |a ICS-8
|0 I:(DE-HGF)0
|b 0
|6 P:(DE-Juel1)161499
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)161548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)140152
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)138367
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)128713
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)128745
913 1 _ |a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|1 G:(DE-HGF)POF3-550
|0 G:(DE-HGF)POF3-552
|2 G:(DE-HGF)POF3-500
|v Engineering Cell Function
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b PHYS WORLD : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-8-20110106
|k ICS-8
|l Bioelektronik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ICS-8-20110106
981 _ _ |a I:(DE-Juel1)IBI-3-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21