
PHYSICAL REVIEW E 96, 022109 (2017)

Fluctuating, Lorentz-force-like coupling of Langevin equations and heat flux rectification
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In a description of physical systems with Langevin equations, interacting degrees of freedom are usually

coupled through symmetric parameter matrices. This coupling symmetry is a consequence of time-reversal

symmetry of the involved conservative forces. If coupling parameters fluctuate randomly, the resulting noise is

called multiplicative. For example, mechanical oscillators can be coupled through a fluctuating, symmetric

matrix of spring “constants.” Such systems exhibit well-studied instabilities. In this article, we study the

complementary case of antisymmetric, time-reversal symmetry-breaking coupling that can be realized with

Lorentz forces or various gyrators. We consider the case in which these antisymmetric couplings fluctuate. This

type of multiplicative noise does not lead to instabilities in the stationary state but renormalizes the effective

nonequilibrium friction. Fluctuating Lorentz-force-like couplings also allow one to control and rectify heat

transfer. A noteworthy property of this mechanism of producing asymmetric heat flux is that the controlling

couplings do not exchange energy with the system.

DOI: 10.1103/PhysRevE.96.022109

I. INTRODUCTION

Continuous stochastic processes can be modeled through

differential equations with added noise processes. If a noise

process appears in a product with a function of the system

variables, noise is referred to as multiplicative. The study

of multiplicative noise has a long history since it can cause

rather dramatic phenomena [1]. For example, even arbitrarily

weak stochastic fluctuations of the eigenfrequency in harmonic

oscillator models lead to instabilities in higher moments of sys-

tem variables [2,3]. Similarly, fluctuating friction parameters

can prohibit stable stationary solutions [4–8]. Such “energetic

instabilities”[2] occur since forces resulting from fluctuating

potentials or friction parameters pump energy in and out of

the system. So far, multiplicative noise processes have been

studied either for one-dimensional systems or for forces that

couple different degrees of freedom symmetrically. In this

article, we consider couplings that are antisymmetric under

time reversal and thus lead to antisymmetric coupling matrices.

Stochastic changes of these “Lorentz-Force-like” couplings

produces multiplicative noise.

Lorentz forces cannot perform work or change the internal

energy since they always act normal to velocities. Therefore,

fluctuating Lorentz-force-like couplings yield a special type

of multiplicative noise that is energetically neutral. Below, we

derive generic differential equations governing the first and

second moments of linear systems with fluctuating Lorentz-

force-like couplings. It is shown that this type of multiplicative

noise does not lead to instabilities but increases the effective

friction that damps the first moment when external forces are

applied. Fluctuations in Lorentz-force-like couplings do not

affect equilibrium correlations between different degrees of

freedom but modify the nonequilibrium correlations.

Next, the energetics of our systems are studied within

the framework of stochastic thermodynamics [9,10]. On the

level of Langevin equations, the first law of thermodynam-

ics naturally leads to a definition of heat. Assuming that
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different degrees of freedom are exposed to separate thermal

environments with different temperature, we can calculate

heat transfer through the system. This heat transfer can be

controlled by fluctuating Lorentz-force-like couplings because

they modify the nonequilibrium correlations. As an example

we analyze heat transfer in a two-component system. Both

components are in contact with their own heat bath, which

fixes the additive noise strengths to different values. Random

motion of one component is transmitted via Lorentz-force-like

coupling to the other, thus, heat is transmitted. Finally, the

model is augmented by the assumption that the fluctuation

strength of the multiplicative noise in the coupling is also

determined by one of the baths. For this system, heat transfer

is no longer symmetric under reversal of the temperature

difference and the system acts as a rectifier for heat. This

mechanism of rectifying heat transfer is notable for the fact that

the Lorentz-force-like couplings producing the heat transfer

asymmetry do not exchange any energy with the system.

II. FLUCTUATING, ANTISYMMETRIC COUPLING OF

LANGEVIN EQUATIONS

A. Langevin equations

In the following, all quantities are assumed to be nondi-

mensional and the Boltzmann constant kb is set to unity.

The Einstein summation convention is not employed. We

study a system of coupled, time-dependent, real variables

xj (t) that could, e.g., represent the positions of microscopic

particles or the charge of electric oscillators. In such systems,

the time derivatives ẋj , i.e., the velocities or currents, can

be coupled through Lorentz forces or Coriolis forces that

break time-reversal symmetry. A general form of the Langevin

equations governing the xj is

ẍj = −
∑

l

[κj l xl + (bj l + ζ̃j l) ẋl + γj l ẋl] + ξj + fj . (1)

The symmetric matrix κ = κT represents, e.g., spring con-

stants in a mechanical system or capacitance in an electric

network. κ is to be positive definite for stability [11].
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We thereby also exclude the marginally stable case where

one eigenvalue of κ is zero. The antisymmetric matrix

b = −bT represents Lorentz-force-like couplings which are,

e.g., realizable through a magnetic field. Fluctuations in the

antisymmetric couplings are modeled by the noise matrix

ζ̃ = −ζ̃
T

. The multiplicative noise ∼ ζ̃j l ẋl is interpreted in the

Stratonovich sense. Finally, we also have a positive-definite,

symmetric “friction matrix” γ = γ T . The two last quantities

on the right side of Eq. (1) are the thermal noise ξj and a

time-dependent force fj .

The statistical average is written as 〈· · · 〉. Both types of

fluctuations have zero average as 〈ξj (t)〉 = 0 and 〈ζ̃j l(t)〉 = 0.

Different types of fluctuations are to be independent, thus,

〈ζ̃j l(t) ξk(t ′)〉 = 0 for all t and t ′. For many physical systems,

the fluctuation autocorrelations decay exponentially. Such

Ornstein-Uhlenbeck-type correlations with inverse relaxation

times λ and λ̃ read for t � 0

〈ξj (0)ξj ′(t)〉 =
λ

2
e−λtKj,j ′ , (2a)

〈ζ̃j l(0)ζ̃j ′l′(t)〉 =
λ̃

2
e−λ̃tBj l(δj,j ′δl,l′ − δj,l′δl,j ′ ). (2b)

The symmetric, positive matrix K in Eq. (2a) determines

the strength of the additive noise. Analogously, B in Eq. (2b)

determines the strength of the multiplicative noise. This matrix

is symmetric B = BT , has only positive entries Bij � 0, and

zeros on the diagonal Bii = 0. For simplicity, we will focus

in the following on the white noise limit of Eqs. (2a) and (2b)

where

λ → ∞, λ̃ → ∞. (3)

In this limit we have limλ→∞(λ e−λt/2) =
limλ̃→∞(λ̃ e−λ̃t/2) = δ(t). For Gaussian noise, cumulants with

order higher than two vanish and we can express higher order

noise correlations through products of pairwise correlations.

B. General solution for the first moment

Taking the average 〈· · · 〉 of Eq. (1) yields

〈ẍj 〉 = −
∑

l

[κj l〈xl〉 + (bj l + γj l)〈ẋl〉] −
∑

l

〈ζ̃j l ẋl〉 + fj ,

(4)

which leaves us with the problem of calculating the expectation

value of correlations with the system variables of form 〈ζ̃j l ẋl〉.
For the case of exponentially decaying, Gaussian noise-noise

correlations, solutions exist in the form of a systematic

expansion for short correlation times [2,12,13]. Here, we

consider the white noise limit λ̃ → ∞ and the procedures

detailed in Ref. [13] yield 〈ζ̃j l ẋl〉 = Bj l〈ẋj 〉/2 (see Appendix).

Thus, the first moments obey

〈ẍj 〉 = −
∑

l

[κj l〈xl〉 + (bj l + γj l)〈ẋl〉] −
∑

m

Bjm

2
〈ẋj 〉 + fj .

(5)

Here, the term −
∑

m Bjm〈ẋj 〉/2 increases the “friction” on

the average trajectories because B is positive [14]. The renor-

malization of the friction constants can possibly be interpreted

as a geometric effect since a Lorentz force produces “curved

trajectories.” Positivity of the effective friction in Eq. (5) is a

consequence of the antisymmetry of the Lorentz-force-like

couplings b = −bT , which appears in the Kronecker-delta

expression in Eq. (2b) as antisymmetry under index exchange

j ↔ l. Note that fluctuations in the friction parameters γ

produce the opposite effect, namely, a reduced effective

friction [6], which can lead to unstable stationary solutions

when the effective friction becomes negative.

C. General solution for the second moment

The equations governing the second moments result from

multiplying Eq. (1) with derivatives of xk and subsequent

averaging. A lengthy calculation yields

d

dt
〈xmxk〉 = 〈ẋkxm〉 + 〈xk ẋm〉, (6a)

d

dt
〈xmẋk〉 = 〈ẋmẋk〉 −

∑

j

Bkj

2
〈xmẋk〉

−
∑

j

(κkj 〈xmxj 〉+[bkj+γkj ]〈xmẋj 〉) + 〈xm〉fk,

(6b)

d

dt
〈ẋmẋk〉 = Kmk +

∑

j

δmkBkj

〈

ẋ2
j

〉

−
∑

j

(

Bkj

2
+

Bmj

2

)

〈ẋmẋk〉 − Bkm〈ẋmẋk〉

−
∑

j

(κkj 〈ẋmxj 〉 + [bkj+γkj ]〈ẋmẋj 〉) + 〈ẋm〉fk

−
∑

i

(κmi〈ẋkxi〉 + [bmi+γmi]〈ẋk ẋi〉) + 〈ẋk〉fm.

(6c)

Equations (5) and (6a)–(6c) for the first and second

moments form a closed system that can readily be solved.

The following provides an example involving the calculation

of heat exchange.

III. HEAT EXCHANGE

From now on the friction matrix in Eq. (1) is assumed to be

diagonal γj l = δj lγj . Furthermore, we assume that the noise

processes ξj in the Langevin equations result from thermal

equilibrium fluctuations of large baths that surround the in-

dividual degrees of freedom xj . The coupling between the

xj and the baths should not depend on the system state and

the bath fluctuations are independent of the system. Each xj

is connected to its own bath with temperature Tj . Therefore,

correlations of the noise variables obey [9,15]

Kj l = δj l 2 γjTj . (7)

A. Definition of heat

The Langevin dynamics can be endowed straight-forwardly

with a thermodynamical interpretation as follows. We multiply
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Eq. (1) by ẋj and subsequently sum over j . The antisymmetric

coupling matrices do not appear in this balance equation since
∑

j l ẋj (bj l + ζ̃j l) ẋl = 0. Therefore, these coupling forces do

not affect the energetics. After averaging, we obtain the

following energy balance:

∑

j l

d

dt

[

δj l

〈

ẋ2
j

2

〉

+
〈

xjκj lxl

2

〉

]

=
∑

j

〈fj ẋj 〉−
(

γj

〈

ẋ2
j

〉

−
Kjj

2

)

,

(8)

where the expression on the left-hand side is the change of

internal energy. The first term on the right-hand side is the

work done by the forces f. The second term on the right-hand

side is the average momentum exchange with the temperature

baths. Accordingly, the heat exchange of each element j with

its thermal environment is defined as [9,16]

Q̇j ≡ γj

〈

ẋ2
j

〉

− 1
2
Kjj . (9)

Note that this definition leads to heat fluxes that are linear

combinations of the temperatures Q̇j = α1 T1 + α2 T2 + . . .

where the coefficients satisfy
∑

k αk = 0. The latter constraint

reduces the number of variables by one, such that Q̇j

can always be written as a function of the temperature

differences.

To describe an equilibrium situation we set fj = 0 and

require that all fluctuations are determined by a single

temperature Teq such that the noise correlations for all j,l

are given by

K
eq

j l = δj l 2 γjTeq. (10)

For long times, stationary correlation functions result from

Eq. (6b) and (6c) as 〈ẋkxm〉eq = 〈xk ẋm〉eq = 0 and 〈ẋmẋk〉eq =
δmkTeq. Thus, the multiplicative noise strength B becomes

irrelevant in equilibrium. Although fluctuations in the antisym-

metric coupling matrices do not change the internal energy or

produce work, they do affect the transfer of energy between

different degrees of freedom in nonequilibrium.

B. A toy model for heat flux control

We next consider an example for how the multiplicative

noise ζ̃ can allow one to control heat transfer. The general

Langevin equation (1) is specialized to the case of two

elements. Furthermore, the system is simplified by assuming a

stationary state with fj = 0 and by assuming that the magnetic

coupling is on average zero (b = 0). The governing equations

are

(

ẍ1

ẍ2

)

= 2

(

−2κ κ

κ −2κ

)(

x1

x2

)

−
(

γ ζ̃

−ζ̃ γ

)(

ẋ1

ẋ2

)

+
(

ξ1

ξ2

)

.

(11)

The two oscillators are to be connected with different heat

baths at temperatures T1 and T2. Thus, the strength of the

additive noise ξ{1,2} is determined by

K11 = 2γ T1, K22 = 2γ T2, K12 = K21 = 0. (12)

The stationary heat exchange can now be calculated straight-

forwardly from Eqs. (6c), (9), and (7). The result is

Q̇1 =
γ [2κ + B12(2γ + B12)](T2 − T1)

4κ + 2(γ + B12)(2γ + B12)
, Q̇2 = −Q̇1.

(13)

Clearly, heat is a nonlinear function of the multiplicative

noise strength B12. However, the multiplicative noise cannot

change the direction of heat transfer in Eq. (13) since per

definition B12 � 0. Thus, spontaneous currents from the colder

to the hotter heat bath cannot occur and thermodynamic

consistency is retained. This result is a consequence of the

usage of antisymmetric couplings as fluctuating quantity since

no energy is injected or removed during fluctuations.

The nonmonotonous dependence of Q̇ on the coupling

constants in Eq. (13) allows one to control heat transfer through

the strength of the multiplicative noise. The two extreme

limits of vanishing and very strong multiplicative noise yield

a heat transfer of Q̇1|B12=0 = γ κ(T2 − T1)/(2γ 2 + 2κ) and

Q̇1|B12→∞ ≈ γ (T2 − T1)/2. In between these limits, a mini-

mum occurs at the fluctuation strength B12 =
√

2κ − 2γ � 0

with a heat transfer of

Q̇min
1 =

γ (
√

2κ/γ − 1)

2
√

2κ/γ − 1
(T2 − T1) �

γ

3
(T2 − T1). (14)

For large friction constants, when γ �
√

κ/2, the minimum

heat transfer occurs at B12 = 0 and Q̇1 increases monotonously

with multiplicative noise intensity.

C. Rectification of heat exchange

Instead of fixing B to some arbitrary value, we now

assume that the fluctuations ζ̃ in Eq. (11) are governed by

the temperature T1 of one of the heat baths. In this case, B12 is

proportional to the temperature as

B12 = B21 = ν T1, B11 = B22 = 0, (15)

where ν is a constant. With this definition of B, Eq. (13)

yields a nonlinear dependence of Q̇1,2 on T1. Moreover,

the magnitude of heat exchange depends asymmetrically on

the direction of heat transfer T1 ↔ T2. Figure 1(a) shows

plots of Eq. (13) for symmetric temperature difference T1,2 =
1 ± 
. As demonstrated in the figure, heat transfer becomes a

quadratic function Q̇1 ≈ −(
 + 
2)ν when γ ≫ ν and also

γ ≫ κ . Then, the magnitude of heat transfer in the direction

T1 → T2 (
 > 0) is stronger than in the reverse direction.

To quantify the asymmetry of heat transfer we consider

the quantity Q̇1(
)/Q̇1(−
) in Fig. 1(b). The asymmetry

becomes large when 
 ≃ 1, i.e., when the temperature differ-

ence is comparable to the mean temperature (T1 + T2)/2. The

plot also demonstrates that increasing the coupling constant

κ generally leads to a less pronounced asymmetry in the heat

transfer.

IV. CONCLUDING REMARKS

Lorentz-force-like couplings can be physically realized in

different ways. Devices that couple fluxes in a nonreciprocal

way are known in electrical engineering as gyrators [17] and

early designs were based on a rectangular Hall element with
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FIG. 1. (a) Heat transfer vs temperature difference 
 = (T1 −
T2)/2 for κ = 1. (b) Asymmetry of heat transfer. Heat transfer in

Eq. (11) can become asymmetric when the multiplicative noise

strength B12 depends on temperature through Eq. (15). Here T1 =
(1 + 
), T2 = (1 − 
), and ν = 1.

separate ports at all four sides [18]. Recent developments

include gyrators based on magnetoelectric materials [19]

and Hall effect gyrators with significantly reduced electrical

resistance [20,21]. It is also possible to build nonreciprocal

microwave waveguides by exploiting the Faraday effect [22].

While these devices rely on time-reversal symmetry-breaking

properties of magnetic fields, one can in principle imagine

replacing the Lorentz forces by Coriolis forces in a rotating

inertial frame. Fluctuations in the resulting antisymmetric

couplings could then be caused, e.g., by noise in the magnetic

field or in the angular velocity. While a detailed study of

the resulting phenomena would require solving Maxwell’s

equations or mechanical force balance equations, we focus

in this note on generic second order stochastic differential

equations with fluctuating, antisymmetric coupling of the

velocity variables. For these systems, we derive general

equations governing the first and second moments under

the assumption of Gaussian white noise. It is demonstrated

that the new type of multiplicative noise only affects the

out-of-equilibrium correlations and does not lead to energetic

instabilities. As an application of our formulas we discuss heat

transport through a system with fluctuating Lorentz-force-like

couplings.

Any heat transport process must satisfy the second law of

thermodynamics, i.e., heat does not flow spontaneously from a

cooler reservoir to a hotter reservoir [23]. Fourier’s law of heat

conduction is linear in temperature differences and therefore

satisfies the requirement naturally. However, nonlinear and

asymmetric heat conduction laws are also possible. Using

our framework for multiplicative noise in Lorentz-force-like

couplings, we study heat transfer between two reservoirs.

Noise processes in the Langevin equations can be interpreted

as thermal equilibrium fluctuations in a temperature bath. This

assumption leads to a natural microscopic identification of heat

and work in the stochastic system, whereby the nonequilibrium

heat exchanged between the bath and the system is related

to the velocity autocorrelations. Consequently, heat flow can

be controlled through fluctuations of the Lorentz-force-like

coupling. This way of controlling heat flow automatically

conserves the energy balance due to energetic neutrality of

antisymmetric coupling matrices. Therefore, such systems can

be studied consistently without explicitly modeling the origin

of the multiplicative noise by additional equations, which

presents an advantage for theoretical work.

Concepts for rectification of heat flow have received con-

siderable scientific attention during recent years. In particular,

studies of low-dimensional nanoscale systems yielded various

principles that allow one to control heat flux and produce

asymmetry under exchange of the heat flow direction [24–35].

Studying different instances of heat flux rectification is not

only important for an understanding of general principles,

but may also have immediate applications, for example in

nanotechnology.
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APPENDIX

In the following, we demonstrate the use of standard

procedures to calculate the noise correlators employed above.

For a system with N space coordinates we define u ≡
{x1 . . . xN ,ẋ1 . . . ẋN } to write Eq. (1) as a system of first order

differential equations

duj

dt
=

∑

l

[Aj l ul + Zj l ul] + �j + Fj . (A1)

Here, the constant parameters κ , b, and γ in Eq. (1) are

absorbed in Aj l . The additive noise is �j = 0 for j � N and

�j = ξj−N for j > N . External forces acting on the system

are contained in Fj . The matrix Zj l contains the multiplicative

noise and its entries are

Zj l = −ζ̃(j−N),(l−N) for j > N and l > N

Zj l = 0 otherwise.

Next, we consider an arbitrary function h(t) that depends on the

zero-mean stationary Gaussian noises Zj l . We seek to calculate

equal time correlations of the form 〈Z..(t)h(t)〉. Following

Ref. [13], we expand h(t) in time-ordered products of the
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noise variables through a functional Taylor series. As a slight

generalization of results given in Ref. [13] we find

d

dt
〈Zj lh〉 = −λ̃〈Zj lh〉 +

〈

ζ̃j l

dh

dt

〉

, (A2a)

d

dt
〈ZmnZj lh〉 = −2λ̃〈ZmnZj lh〉 +

〈

ZmnZj l

dh

dt

〉

+ 2λ̃〈ZmnZj l〉〈h〉, (A2b)

d

dt
〈ZrsZmnZj lh〉 = −3λ̃〈ZrsZmnZj lh〉 +

〈

ZrsZmnZj l

dh

dt

〉

+ 2λ̃[〈ZrsZmn〉〈Zj lh〉 + 〈ZrsZj l〉〈Znmh〉
+ 〈ZmnZj l〉〈Zrsh〉], (A2c)

These formulas hold for both of our noise sources with

exchanged variables Zkl → �j , λ̃ → λ. We can now set h =
uj in Eqs. (A2a)–(A2c) and use the Langevin equation (A1)

to obtain a hierarchy of equations where every correlation

is connected to correlations of the next higher order in Z...

Integration of Eqs. (A2a) and (A2b) yields

〈Zj luk〉 =
∫ t

0

e−λ̃(t−t ′)

〈

Zj l

duk

dt

〉∣

∣

∣

∣

t ′
dt ′, (A3a)

〈Zj lZmnuk〉 =
∫ t ′

0

e−2λ̃(t ′−t ′′)

[

2λ̃〈Zj lZmn〉〈uk〉

+
〈

Zj lZmn

duk

dt

〉]

t ′′
dt ′′, (A3b)

where we assumed that the contribution of initial values of

the correlations vanishes. Together, these equations yield

〈Zj luk〉 =
∑

m

∫ t

0

e−λ̃(t−t ′)

[

〈Zj l(Akmum + �k + Fk)〉|t ′

+
∫ t ′

0

e−2λ̃(t ′−t ′′)

(

2λ̃〈Zj lZkm〉〈um〉

+
〈

Zj lZkm

dum

dt

〉)

t ′′
dt ′′

]

dt ′, (A4)

We next consider the limit of very short noise correlations

λ̃ → ∞ where of course t > 0. Assuming that the sought-for

correlations are finite, the terms in Eq. (A4) in the first line on

the right side yield a contribution of vanishing measure since

the factor e−λ̃(t−t ′) is zero for (t − t ′) > 0 and only finite for the

point (t − t ′) = 0. For the first summand on the second line of

Eq. (A4), we can employ the correlation relations (2b), yielding

a contribution that can be at most ∼ λ̃2. This term survives the

limit of λ̃ → ∞ since then λ̃e−λ̃(t−t ′) → 2δ(t − t ′).

To evaluate the last term in Eq. (A4) we could again replace
duj

dt
by Eq. (A1) and use the integral of Eq. (A2c). However, the

last three summands on the right-hand side of Eq. (A2c) are

at most ∼ λ̃2 and are therefore suppressed by the exponential

integral factors in the limit of λ̃ → ∞. The second term on

the right side of Eq. (A2c) can only yield a nonzero, finite

contribution in the case that 〈Z..Z..Z..Z..ui〉 ∼ λ3. However,

this case is rejected on physical grounds since for Gaussian

noise 〈Z4
..〉 is at most ∼ λ̃2 and ui varies on a much longer time

scale than the noise variable. Thus, the only nonvanishing

contribution to the integral in Eq. (A4) comes from the first

summand in the second line. The result is

〈Zj luk〉 =
∑

m

∫ t

0

e−λ̃(t−t ′)

∫ t ′

0

e−2λ̃(t ′−t ′′)2λ̃〈Zj lZkm〉

× 〈um〉|t ′′dt ′′ dt ′. (A5)

Next, we revert back to our original variables. Since the

matrix elements {Z..} contain multiplicative noise components

{−ζ̃..}, we employ Eq. (2b) and take the limit of large λ̃ to

obtain

〈ζ̃j lxk〉 = 0, (A6a)

〈ζ̃j l ẋk〉 =
Bj l

2
(δlk − δjk)〈ẋk〉. (A6b)

These are the correlations that were employed for derivation

of Eq. (5). Through an analogous calculation for the additive

noise ξ we obtain by simply exchanging the noise variables in

above derivation

〈ξjxk〉 = 0, (A7a)

〈ξj ẋk〉 =
Kjk

2
. (A7b)

For calculation of the second moments of the system

variables we need the correlation between noise and two

system variables 〈Zj lukui〉. This expression can be evaluated

by setting h = ukui in Eqs. (A2a) and (A2b) and by then

following through with the same procedure as above. The final

result, in original variables after evaluation of the Kronecker-

delta expressions Eq. (2b), reads

〈ζ̃j lxkxi〉 = 0, (A8a)

〈ζ̃j l ẋkxi〉 = −
Bj l

2
[δjk〈ẋlxi〉 − δlk〈ẋjxi〉], (A8b)

〈ζ̃j l ẋk ẋi〉 = −
Bj l

2
[δji〈ẋk ẋl〉 − δli〈ẋk ẋj 〉]

−
Bj l

2
[δjk〈ẋl ẋi〉 − δlk〈ẋj ẋi〉]. (A8c)
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