000837560 001__ 837560
000837560 005__ 20210129231353.0
000837560 0247_ $$2doi$$a10.2136/vzj2017.04.0086
000837560 0247_ $$2Handle$$a2128/15269
000837560 0247_ $$2WOS$$aWOS:000408267600001
000837560 0247_ $$2altmetric$$aaltmetric:24231881
000837560 037__ $$aFZJ-2017-06448
000837560 082__ $$a550
000837560 1001_ $$0P:(DE-HGF)0$$aAndreasen, Mie$$b0$$eCorresponding author
000837560 245__ $$aStatus and Perspectives on the Cosmic-Ray Neutron Method for Soil Moisture Estimation and Other Environmental Science Applications
000837560 260__ $$aMadison, Wis.$$bSSSA$$c2017
000837560 3367_ $$2DRIVER$$aarticle
000837560 3367_ $$2DataCite$$aOutput Types/Journal article
000837560 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1504855908_17817
000837560 3367_ $$2BibTeX$$aARTICLE
000837560 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837560 3367_ $$00$$2EndNote$$aJournal Article
000837560 520__ $$aSince the introduction of the cosmic-ray neutron method for soil moisture estimation, numerous studies have been conducted to test and advance the accuracy of the method. Almost 200 stationary neutron detector systems have been installed worldwide, and roving systems have also started to gain ground. The intensity of low-energy neutrons produced by cosmic rays, measured above the ground surface, is sensitive to soil moisture in the upper decimeters of the ground within a radius of hectometers. The method has been proven suitable for estimating soil moisture for a wide range of land covers and soil types and has been used for hydrological modeling, data assimilation, and calibration and validation of satellite products. The method is challenged by the effect on neutron intensity of other hydrogen pools such as vegetation, canopy interception, and snow. Identifying the signal of the different pools can be used to improve the cosmic-ray neutron soil moisture method as well as extend the application to, e.g., biomass and canopy interception surveying. More fundamental research is required for advancement of the method to include more energy ranges and consider multiple height levels.
000837560 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000837560 588__ $$aDataset connected to CrossRef
000837560 7001_ $$0P:(DE-HGF)0$$aJensen, Karsten H.$$b1
000837560 7001_ $$0P:(DE-HGF)0$$aDesilets, Darin$$b2
000837560 7001_ $$0P:(DE-HGF)0$$aFranz, Trenton E.$$b3
000837560 7001_ $$0P:(DE-HGF)0$$aZreda, Marek$$b4
000837560 7001_ $$0P:(DE-Juel1)129440$$aBogena, Heye$$b5
000837560 7001_ $$0P:(DE-HGF)0$$aLooms, Majken C.$$b6
000837560 773__ $$0PERI:(DE-600)2088189-7$$a10.2136/vzj2017.04.0086$$gVol. 16, no. 8, p. 0 -$$n8$$p0 -$$tVadose zone journal$$v16$$x1539-1663$$y2017
000837560 8564_ $$uhttps://juser.fz-juelich.de/record/837560/files/vzj-16-8-vzj2017.04.0086.pdf$$yOpenAccess
000837560 8564_ $$uhttps://juser.fz-juelich.de/record/837560/files/vzj-16-8-vzj2017.04.0086.gif?subformat=icon$$xicon$$yOpenAccess
000837560 8564_ $$uhttps://juser.fz-juelich.de/record/837560/files/vzj-16-8-vzj2017.04.0086.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000837560 8564_ $$uhttps://juser.fz-juelich.de/record/837560/files/vzj-16-8-vzj2017.04.0086.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000837560 8564_ $$uhttps://juser.fz-juelich.de/record/837560/files/vzj-16-8-vzj2017.04.0086.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000837560 8564_ $$uhttps://juser.fz-juelich.de/record/837560/files/vzj-16-8-vzj2017.04.0086.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000837560 909CO $$ooai:juser.fz-juelich.de:837560$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000837560 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129440$$aForschungszentrum Jülich$$b5$$kFZJ
000837560 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000837560 9141_ $$y2017
000837560 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837560 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000837560 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bVADOSE ZONE J : 2015
000837560 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837560 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837560 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000837560 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000837560 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000837560 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000837560 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837560 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000837560 980__ $$ajournal
000837560 980__ $$aVDB
000837560 980__ $$aUNRESTRICTED
000837560 980__ $$aI:(DE-Juel1)IBG-3-20101118
000837560 9801_ $$aFullTexts