001     837560
005     20210129231353.0
024 7 _ |a 10.2136/vzj2017.04.0086
|2 doi
024 7 _ |a 2128/15269
|2 Handle
024 7 _ |a WOS:000408267600001
|2 WOS
024 7 _ |a altmetric:24231881
|2 altmetric
037 _ _ |a FZJ-2017-06448
082 _ _ |a 550
100 1 _ |a Andreasen, Mie
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Status and Perspectives on the Cosmic-Ray Neutron Method for Soil Moisture Estimation and Other Environmental Science Applications
260 _ _ |a Madison, Wis.
|c 2017
|b SSSA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1504855908_17817
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Since the introduction of the cosmic-ray neutron method for soil moisture estimation, numerous studies have been conducted to test and advance the accuracy of the method. Almost 200 stationary neutron detector systems have been installed worldwide, and roving systems have also started to gain ground. The intensity of low-energy neutrons produced by cosmic rays, measured above the ground surface, is sensitive to soil moisture in the upper decimeters of the ground within a radius of hectometers. The method has been proven suitable for estimating soil moisture for a wide range of land covers and soil types and has been used for hydrological modeling, data assimilation, and calibration and validation of satellite products. The method is challenged by the effect on neutron intensity of other hydrogen pools such as vegetation, canopy interception, and snow. Identifying the signal of the different pools can be used to improve the cosmic-ray neutron soil moisture method as well as extend the application to, e.g., biomass and canopy interception surveying. More fundamental research is required for advancement of the method to include more energy ranges and consider multiple height levels.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Jensen, Karsten H.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Desilets, Darin
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Franz, Trenton E.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Zreda, Marek
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Bogena, Heye
|0 P:(DE-Juel1)129440
|b 5
700 1 _ |a Looms, Majken C.
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.2136/vzj2017.04.0086
|g Vol. 16, no. 8, p. 0 -
|0 PERI:(DE-600)2088189-7
|n 8
|p 0 -
|t Vadose zone journal
|v 16
|y 2017
|x 1539-1663
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/837560/files/vzj-16-8-vzj2017.04.0086.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/837560/files/vzj-16-8-vzj2017.04.0086.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/837560/files/vzj-16-8-vzj2017.04.0086.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/837560/files/vzj-16-8-vzj2017.04.0086.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/837560/files/vzj-16-8-vzj2017.04.0086.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/837560/files/vzj-16-8-vzj2017.04.0086.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:837560
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129440
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b VADOSE ZONE J : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21