000837563 001__ 837563
000837563 005__ 20210129231355.0
000837563 0247_ $$2doi$$a10.1175/JHM-D-16-0159.1
000837563 0247_ $$2ISSN$$a1525-7541
000837563 0247_ $$2ISSN$$a1525-755X
000837563 0247_ $$2Handle$$a2128/15271
000837563 0247_ $$2WOS$$aWOS:000405926000016
000837563 0247_ $$2altmetric$$aaltmetric:17397770
000837563 037__ $$aFZJ-2017-06451
000837563 082__ $$a550
000837563 1001_ $$0P:(DE-HGF)0$$aSulis, Mauro$$b0$$eCorresponding author
000837563 245__ $$aCoupling Groundwater, Vegetation, and Atmospheric Processes: A Comparison of Two Integrated Models
000837563 260__ $$aBoston, Mass.$$bAMS$$c2017
000837563 3367_ $$2DRIVER$$aarticle
000837563 3367_ $$2DataCite$$aOutput Types/Journal article
000837563 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1580284359_28137
000837563 3367_ $$2BibTeX$$aARTICLE
000837563 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837563 3367_ $$00$$2EndNote$$aJournal Article
000837563 520__ $$aThis study compares two modeling platforms, ParFlow.WRF (PF.WRF) and the Terrestrial Systems Modeling Platform (TerrSysMP), with a common 3D integrated surface–groundwater model to examine the variability in simulated soil–vegetation–atmosphere interactions. Idealized and hindcast simulations over the North Rhine–Westphalia region in western Germany for clear-sky conditions and strong convective precipitation using both modeling platforms are presented. Idealized simulations highlight the strong variability introduced by the difference in land surface parameterizations (e.g., ground evaporation and canopy transpiration) and atmospheric boundary layer (ABL) schemes on the simulated land–atmosphere interactions. Results of the idealized simulations also suggest a different range of sensitivity in the two models of land surface and atmospheric parameterizations to water-table depth fluctuations. For hindcast simulations, both modeling platforms simulate net radiation and cumulative precipitation close to observed station data, while larger differences emerge between spatial patterns of soil moisture and convective rainfall due to the difference in the physical parameterization of the land surface and atmospheric component. This produces a different feedback by the hydrological model in the two platforms in terms of discharge over different catchments in the study area. Finally, an analysis of land surface and ABL heat and moisture budgets using the mixing diagram approach reveals different sensitivities of diurnal atmospheric processes to the groundwater parameterizations in both modeling platforms.
000837563 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000837563 536__ $$0G:(DE-Juel1)hbn33_20150501$$aEvaluating the influence of subsurface hydrodynamics on atmospheric processes (hbn33_20150501)$$chbn33_20150501$$fEvaluating the influence of subsurface hydrodynamics on atmospheric processes$$x1
000837563 588__ $$aDataset connected to CrossRef
000837563 7001_ $$0P:(DE-HGF)0$$aWilliams, John L.$$b1
000837563 7001_ $$0P:(DE-HGF)0$$aShrestha, Prabhakar$$b2
000837563 7001_ $$0P:(DE-HGF)0$$aDiederich, Malte$$b3
000837563 7001_ $$0P:(DE-HGF)0$$aSimmer, Clemens$$b4
000837563 7001_ $$0P:(DE-Juel1)151405$$aKollet, Stefan$$b5
000837563 7001_ $$0P:(DE-HGF)0$$aMaxwell, Reed M.$$b6
000837563 773__ $$0PERI:(DE-600)2042176-X$$a10.1175/JHM-D-16-0159.1$$gVol. 18, no. 5, p. 1489 - 1511$$n5$$p1489 - 1511$$tJournal of hydrometeorology$$v18$$x1525-7541$$y2017
000837563 8564_ $$uhttps://juser.fz-juelich.de/record/837563/files/jhm-d-16-0159.1.pdf$$yOpenAccess
000837563 8564_ $$uhttps://juser.fz-juelich.de/record/837563/files/jhm-d-16-0159.1.gif?subformat=icon$$xicon$$yOpenAccess
000837563 8564_ $$uhttps://juser.fz-juelich.de/record/837563/files/jhm-d-16-0159.1.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000837563 8564_ $$uhttps://juser.fz-juelich.de/record/837563/files/jhm-d-16-0159.1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000837563 8564_ $$uhttps://juser.fz-juelich.de/record/837563/files/jhm-d-16-0159.1.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000837563 8564_ $$uhttps://juser.fz-juelich.de/record/837563/files/jhm-d-16-0159.1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000837563 909CO $$ooai:juser.fz-juelich.de:837563$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000837563 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)151405$$aForschungszentrum Jülich$$b5$$kFZJ
000837563 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000837563 9141_ $$y2017
000837563 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837563 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000837563 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ HYDROMETEOROL : 2015
000837563 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837563 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837563 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000837563 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000837563 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000837563 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000837563 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837563 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000837563 9201_ $$0I:(DE-Juel1)NIC-20090406$$kNIC$$lJohn von Neumann - Institut für Computing$$x1
000837563 980__ $$ajournal
000837563 980__ $$aVDB
000837563 980__ $$aI:(DE-Juel1)IBG-3-20101118
000837563 980__ $$aI:(DE-Juel1)NIC-20090406
000837563 980__ $$aUNRESTRICTED
000837563 9801_ $$aFullTexts