001     837564
005     20210129231355.0
024 7 _ |a 10.2134/jeq2017.03.0117
|2 doi
024 7 _ |a 0047-2425
|2 ISSN
024 7 _ |a 1537-2537
|2 ISSN
024 7 _ |a pmid:28991980
|2 pmid
024 7 _ |a WOS:000411433900022
|2 WOS
024 7 _ |a altmetric:26148923
|2 altmetric
037 _ _ |a FZJ-2017-06452
041 _ _ |a English
082 _ _ |a 333.7
100 1 _ |a Van Nguyen, Quan
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Biogas Digester Hydraulic Retention Time Affects Oxygen Consumption Patterns and Greenhouse Gas Emissions after Application of Digestate to Soil
260 _ _ |a Madison, Wis.
|c 2017
|b ASA [u.a.]
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1507110794_26432
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Knowledge about environmental impacts associated with the application of anaerobic digestion residue to agricultural land is of interest owing to the rapid proliferation of biogas plants worldwide. However, virtually no information exists concerning how soil-emitted N2O is affected by the feedstock hydraulic retention time (HRT) in the biogas digester. Here, the O2 planar optode technique was used to visualize soil O2 dynamics following the surface application of digestates of the codigestion of pig slurry and agro-industrial waste. We also used N2O isotopomer analysis of soil-emitted N2O to determine the N2O production pathways, i.e., nitrification or denitrification. Two-dimensional images of soil O2 indicated that anoxic and hypoxic conditions developed at 2.0- and 1.5-cm soil depth for soil amended with the digestate produced with 15-d (PO15) and 30-d (PO30) retention time, respectively. Total N2O emissions were significantly lower for PO15 than PO30 due to the greater expansion of the anoxic zone, which enhanced N2O reduction via complete denitrification. However, cumulative CO2 emissions were not significantly different between PO15 and PO30 for the entire incubation period. During incubation, N2O emissions came from both nitrification and denitrification in amended soils. Increasing the HRT of the biogas digester appears to induce significant N2O emissions, but it is unlikely to affect the N2O production pathways after application to soil.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Jensen, Lars Stoumann
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Bol, Roland
|0 P:(DE-Juel1)145865
|b 2
700 1 _ |a Wu, Di
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Triolo, Jin Mi
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Vazifehkhoran, Ali Heidarzadeh
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Bruun, Sander
|0 P:(DE-HGF)0
|b 6
773 _ _ |a 10.2134/jeq2017.03.0117
|g Vol. 0, no. 0, p. 0 -
|0 PERI:(DE-600)2050469-X
|n 5
|p 1114-1122
|t Journal of environmental quality
|v 46
|y 2017
|x 0047-2425
856 4 _ |u https://juser.fz-juelich.de/record/837564/files/jeq-46-5-1114.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837564/files/jeq-46-5-1114.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837564/files/jeq-46-5-1114.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837564/files/jeq-46-5-1114.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837564/files/jeq-46-5-1114.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837564/files/jeq-46-5-1114.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:837564
|p VDB
|p VDB:Earth_Environment
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)145865
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ENVIRON QUAL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21