000837567 001__ 837567
000837567 005__ 20210129231355.0
000837567 0247_ $$2doi$$a10.2136/vzj2016.12.0134
000837567 0247_ $$2Handle$$a2128/15297
000837567 0247_ $$2WOS$$aWOS:000425218400004
000837567 0247_ $$2altmetric$$aaltmetric:26496438
000837567 037__ $$aFZJ-2017-06455
000837567 082__ $$a550
000837567 1001_ $$0P:(DE-HGF)0$$aMeunier, Félicien$$b0$$eCorresponding author
000837567 245__ $$aMeasuring and Modeling Hydraulic Lift of Using Stable Water Isotopes
000837567 260__ $$aMadison, Wis.$$bSSSA$$c2017
000837567 3367_ $$2DRIVER$$aarticle
000837567 3367_ $$2DataCite$$aOutput Types/Journal article
000837567 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1505742772_31853
000837567 3367_ $$2BibTeX$$aARTICLE
000837567 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837567 3367_ $$00$$2EndNote$$aJournal Article
000837567 520__ $$aThis study tested a method to quantify and locate hydraulic lift (HL, defined as the passive upward water flow from wetter to dryer soil zones through the plant root system) by combining an experiment using the stable water isotope 1H2 18O as a tracer with a soil–plant water flow model. Our methodology consisted in (i) establishing the initial conditions for HL in a large rhizobox planted with Italian ryegrass (Lolium multiflorum Lam.), (ii) labeling water in the deepest soil layer with an 18O-enriched solution, (iii) monitoring the water O isotopic composition in soil layers to find out changes in the upper layers that would reflect redistribution of 18O-enriched water from the bottom layers by the roots, and (iv) comparing the observed soil water O isotopic composition to simulation results of a three-dimensional model of water flow and isotope transport in the soil–root system. Our main findings were that (i) the depth and strength of the observed changes in soil water O isotopic composition could be well reproduced with a modeling approach (RMSE = 0.2‰, i.e., equivalent to the precision of the isotopic measurements), (ii) the corresponding water volume involved in HL was estimated to account for 19% of the plant transpiration of the following day, i.e., 0.45 mm of water, and was in agreement with the observed soil water content changes, and (iii) the magnitude of the simulated HL was sensitive to both plant and soil hydraulic properties.
000837567 536__ $$0G:(DE-HGF)POF3-255$$a255 - Terrestrial Systems: From Observation to Prediction (POF3-255)$$cPOF3-255$$fPOF III$$x0
000837567 588__ $$aDataset connected to CrossRef
000837567 7001_ $$0P:(DE-Juel1)145658$$aRothfuss, Youri$$b1
000837567 7001_ $$0P:(DE-HGF)0$$aBariac, Thierry$$b2
000837567 7001_ $$0P:(DE-HGF)0$$aBiron, Philippe$$b3
000837567 7001_ $$0P:(DE-HGF)0$$aRichard, Patricia$$b4
000837567 7001_ $$0P:(DE-HGF)0$$aDurand, Jean-Louis$$b5
000837567 7001_ $$0P:(DE-HGF)0$$aCouvreur, Valentin$$b6
000837567 7001_ $$0P:(DE-Juel1)129548$$aVanderborght, Jan$$b7
000837567 7001_ $$0P:(DE-Juel1)129477$$aJavaux, Mathieu$$b8
000837567 773__ $$0PERI:(DE-600)2088189-7$$a10.2136/vzj2016.12.0134$$gVol. 0, no. 0, p. 0 -$$n $$p $$tVadose zone journal$$v $$x1539-1663$$y2017
000837567 8564_ $$uhttps://juser.fz-juelich.de/record/837567/files/vzj-0-0-vzj2016.12.0134.pdf$$yOpenAccess
000837567 8564_ $$uhttps://juser.fz-juelich.de/record/837567/files/vzj-0-0-vzj2016.12.0134.gif?subformat=icon$$xicon$$yOpenAccess
000837567 8564_ $$uhttps://juser.fz-juelich.de/record/837567/files/vzj-0-0-vzj2016.12.0134.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000837567 8564_ $$uhttps://juser.fz-juelich.de/record/837567/files/vzj-0-0-vzj2016.12.0134.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000837567 8564_ $$uhttps://juser.fz-juelich.de/record/837567/files/vzj-0-0-vzj2016.12.0134.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000837567 8564_ $$uhttps://juser.fz-juelich.de/record/837567/files/vzj-0-0-vzj2016.12.0134.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000837567 909CO $$ooai:juser.fz-juelich.de:837567$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000837567 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145658$$aForschungszentrum Jülich$$b1$$kFZJ
000837567 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129548$$aForschungszentrum Jülich$$b7$$kFZJ
000837567 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129477$$aForschungszentrum Jülich$$b8$$kFZJ
000837567 9131_ $$0G:(DE-HGF)POF3-255$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bErde und Umwelt$$lTerrestrische Umwelt$$vTerrestrial Systems: From Observation to Prediction$$x0
000837567 9141_ $$y2017
000837567 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837567 915__ $$0LIC:(DE-HGF)CCBYNCND4$$2HGFVOC$$aCreative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
000837567 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bVADOSE ZONE J : 2015
000837567 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837567 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837567 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000837567 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000837567 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000837567 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000837567 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837567 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$kIBG-3$$lAgrosphäre$$x0
000837567 980__ $$ajournal
000837567 980__ $$aVDB
000837567 980__ $$aUNRESTRICTED
000837567 980__ $$aI:(DE-Juel1)IBG-3-20101118
000837567 9801_ $$aFullTexts