001     837567
005     20210129231355.0
024 7 _ |a 10.2136/vzj2016.12.0134
|2 doi
024 7 _ |a 2128/15297
|2 Handle
024 7 _ |a WOS:000425218400004
|2 WOS
024 7 _ |a altmetric:26496438
|2 altmetric
037 _ _ |a FZJ-2017-06455
082 _ _ |a 550
100 1 _ |a Meunier, Félicien
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Measuring and Modeling Hydraulic Lift of Using Stable Water Isotopes
260 _ _ |a Madison, Wis.
|c 2017
|b SSSA
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1505742772_31853
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a This study tested a method to quantify and locate hydraulic lift (HL, defined as the passive upward water flow from wetter to dryer soil zones through the plant root system) by combining an experiment using the stable water isotope 1H2 18O as a tracer with a soil–plant water flow model. Our methodology consisted in (i) establishing the initial conditions for HL in a large rhizobox planted with Italian ryegrass (Lolium multiflorum Lam.), (ii) labeling water in the deepest soil layer with an 18O-enriched solution, (iii) monitoring the water O isotopic composition in soil layers to find out changes in the upper layers that would reflect redistribution of 18O-enriched water from the bottom layers by the roots, and (iv) comparing the observed soil water O isotopic composition to simulation results of a three-dimensional model of water flow and isotope transport in the soil–root system. Our main findings were that (i) the depth and strength of the observed changes in soil water O isotopic composition could be well reproduced with a modeling approach (RMSE = 0.2‰, i.e., equivalent to the precision of the isotopic measurements), (ii) the corresponding water volume involved in HL was estimated to account for 19% of the plant transpiration of the following day, i.e., 0.45 mm of water, and was in agreement with the observed soil water content changes, and (iii) the magnitude of the simulated HL was sensitive to both plant and soil hydraulic properties.
536 _ _ |a 255 - Terrestrial Systems: From Observation to Prediction (POF3-255)
|0 G:(DE-HGF)POF3-255
|c POF3-255
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Rothfuss, Youri
|0 P:(DE-Juel1)145658
|b 1
700 1 _ |a Bariac, Thierry
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Biron, Philippe
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Richard, Patricia
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Durand, Jean-Louis
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Couvreur, Valentin
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Vanderborght, Jan
|0 P:(DE-Juel1)129548
|b 7
700 1 _ |a Javaux, Mathieu
|0 P:(DE-Juel1)129477
|b 8
773 _ _ |a 10.2136/vzj2016.12.0134
|g Vol. 0, no. 0, p. 0 -
|0 PERI:(DE-600)2088189-7
|n
|p
|t Vadose zone journal
|v
|y 2017
|x 1539-1663
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/837567/files/vzj-0-0-vzj2016.12.0134.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/837567/files/vzj-0-0-vzj2016.12.0134.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/837567/files/vzj-0-0-vzj2016.12.0134.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/837567/files/vzj-0-0-vzj2016.12.0134.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/837567/files/vzj-0-0-vzj2016.12.0134.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/837567/files/vzj-0-0-vzj2016.12.0134.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:837567
|p openaire
|p open_access
|p driver
|p VDB:Earth_Environment
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145658
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129477
913 1 _ |a DE-HGF
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF3-250
|0 G:(DE-HGF)POF3-255
|2 G:(DE-HGF)POF3-200
|v Terrestrial Systems: From Observation to Prediction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Erde und Umwelt
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a Creative Commons Attribution-NonCommercial-NoDerivs CC BY-NC-ND 4.0
|0 LIC:(DE-HGF)CCBYNCND4
|2 HGFVOC
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b VADOSE ZONE J : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IBG-3-20101118
|k IBG-3
|l Agrosphäre
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21