001     837584
005     20240712084534.0
024 7 _ |a 10.1016/j.solmat.2017.08.035
|2 doi
024 7 _ |a 0927-0248
|2 ISSN
024 7 _ |a 1879-3398
|2 ISSN
024 7 _ |a 2128/15289
|2 Handle
024 7 _ |a WOS:000415392500023
|2 WOS
037 _ _ |a FZJ-2017-06467
082 _ _ |a 530
100 1 _ |a Richter, Alexei
|0 P:(DE-Juel1)162140
|b 0
|e Corresponding author
245 _ _ |a Versatility of doped nanocrystalline silicon oxide for applications in silicon thin-film and heterojunction solar cells
260 _ _ |a Amsterdam [u.a.]
|c 2018
|b NH, Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1505460104_21917
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a To optimize the optical response of a solar cell, specifically designed materials with appropriate optoelectronic properties are needed. Owing to the unique microstructure of doped nanocrystalline silicon oxide, nc-SiOx:H, this material is able to cover an extensive range of optical and electrical properties. However, applying nc-SiOx:H thin-films in photovoltaic devices necessitates an individual adaptation of the material properties according to the specific functions in the device. In this study, we investigated the detailed microstructure of doped nc-SiOx:H films via atom probe tomography at the sub-nm scale, thereby, for the first time, revealing the three-dimensional distribution of the nc-Si network. Furthermore, n- and p-type nc-SiOx:H layers with various optical and electrical properties were implemented as a window, back contact, and an intermediate reflector layer in silicon heterojunction and multi-junction thin-film solar cells with a focus on the key aspects for adapting the material properties to the specific functions. Here, nc-SiOx:H effectively reduced the parasitic absorption and opened new possibilities for the photon management in the solar cells, thereby, demonstrating the versatility of this material. Remarkably, using our adapted nc-SiOx:H layers in distinct functions enabled us to achieve a combined short circuit current density of 15.1 mA cm−2 for the two a-Si:H sub-cells in an a-Si:H/a-Si:H/µc-Si:H triple-junction thin-film solar cell and an active area efficiency of 21.4% was realized for a silicon heterojunction solar cell.
536 _ _ |a 121 - Solar cells of the next generation (POF3-121)
|0 G:(DE-HGF)POF3-121
|c POF3-121
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Smirnov, Vladimir
|0 P:(DE-Juel1)130297
|b 1
|u fzj
700 1 _ |a Lambertz, Andreas
|0 P:(DE-Juel1)130263
|b 2
|u fzj
700 1 _ |a Nomoto, Keita
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Welter, Katharina
|0 P:(DE-Juel1)167359
|b 4
|u fzj
700 1 _ |a Ding, Kaining
|0 P:(DE-Juel1)130233
|b 5
|u fzj
773 _ _ |a 10.1016/j.solmat.2017.08.035
|g Vol. 174, p. 196 - 201
|0 PERI:(DE-600)2012677-3
|p 196 - 201
|t Solar energy materials & solar cells
|v 174
|y 2018
|x 0927-0248
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/837584/files/RevisedManuscript.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/837584/files/RevisedManuscript.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/837584/files/RevisedManuscript.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/837584/files/RevisedManuscript.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/837584/files/RevisedManuscript.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/837584/files/RevisedManuscript.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:837584
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)162140
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)130297
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130263
910 1 _ |a External Institute
|0 I:(DE-HGF)0
|k Extern
|b 3
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)167359
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130233
913 1 _ |a DE-HGF
|l Erneuerbare Energien
|1 G:(DE-HGF)POF3-120
|0 G:(DE-HGF)POF3-121
|2 G:(DE-HGF)POF3-100
|v Solar cells of the next generation
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2018
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOL ENERG MAT SOL C : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-5-20101013
|k IEK-5
|l Photovoltaik
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-5-20101013
981 _ _ |a I:(DE-Juel1)IMD-3-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21