000837599 001__ 837599
000837599 005__ 20250129094405.0
000837599 0247_ $$2doi$$a10.1038/s41598-017-10208-1
000837599 0247_ $$2Handle$$a2128/15284
000837599 0247_ $$2WOS$$aWOS:000408997700006
000837599 0247_ $$2altmetric$$aaltmetric:11888064
000837599 0247_ $$2pmid$$apmid:28871098
000837599 037__ $$aFZJ-2017-06482
000837599 082__ $$a000
000837599 1001_ $$0P:(DE-HGF)0$$aWaßer, F.$$b0$$eCorresponding author
000837599 245__ $$aAnisotropic resonance modes emerging in an antiferromagnetic superconducting state
000837599 260__ $$aLondon$$bNature Publishing Group$$c2017
000837599 3367_ $$2DRIVER$$aarticle
000837599 3367_ $$2DataCite$$aOutput Types/Journal article
000837599 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1505457990_21918
000837599 3367_ $$2BibTeX$$aARTICLE
000837599 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837599 3367_ $$00$$2EndNote$$aJournal Article
000837599 520__ $$aTwo strong arguments in favor of magnetically driven unconventional superconductivity arise from the coexistence and closeness of superconducting and magnetically ordered phases on the one hand, and from the emergence of magnetic spin-resonance modes at the superconducting transition on the other hand. Combining these two arguments one may ask about the nature of superconducting spin-resonance modes occurring in an antiferromagnetic state. This problem can be studied in underdoped BaFe2 As2, for which the local coexistence of large moment antiferromagnetism and superconductivity is well established by local probes. However, polarized neutron scattering experiments are required to identify the nature of the resonance modes. In the normal state of Co underdoped BaFe2 As2 the antiferromagnetic order results in broad magnetic gaps opening in all three spin directions that are reminiscent of the magnetic response in the parent compound. In the superconducting state two distinct anisotropic resonance excitations emerge, but in contrast to numerous studies on optimum and over-doped BaFe2 As2 there is no isotropic resonance excitation. The two anisotropic resonance modes appearing within the antiferromagnetic phase are attributed to a band selective superconducting state, in which longitudinal magnetic excitations are gapped by antiferromagnetic order with sizable moment.
000837599 536__ $$0G:(DE-HGF)POF3-144$$a144 - Controlling Collective States (POF3-144)$$cPOF3-144$$fPOF III$$x0
000837599 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x1
000837599 536__ $$0G:(DE-HGF)POF3-6212$$a6212 - Quantum Condensed Matter: Magnetism, Superconductivity (POF3-621)$$cPOF3-621$$fPOF III$$x2
000837599 536__ $$0G:(DE-HGF)POF3-6213$$a6213 - Materials and Processes for Energy and Transport Technologies (POF3-621)$$cPOF3-621$$fPOF III$$x3
000837599 536__ $$0G:(DE-HGF)POF3-6G4$$a6G4 - Jülich Centre for Neutron Research (JCNS) (POF3-623)$$cPOF3-623$$fPOF III$$x4
000837599 588__ $$aDataset connected to CrossRef
000837599 693__ $$0EXP:(DE-Juel1)ILL-IN12-20150421$$5EXP:(DE-Juel1)ILL-IN12-20150421$$eILL-IN12: Cold neutron 3-axis spectrometer$$x0
000837599 7001_ $$0P:(DE-HGF)0$$aLee, C. H.$$b1
000837599 7001_ $$0P:(DE-HGF)0$$aKihou, K.$$b2
000837599 7001_ $$0P:(DE-HGF)0$$aSteffens, P.$$b3
000837599 7001_ $$0P:(DE-Juel1)130943$$aSchmalzl, K.$$b4$$ufzj
000837599 7001_ $$0P:(DE-HGF)0$$aQureshi, N.$$b5
000837599 7001_ $$0P:(DE-HGF)0$$aBraden, M.$$b6$$eCorresponding author
000837599 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/s41598-017-10208-1$$gVol. 7, no. 1, p. 10307$$n1$$p10307$$tScientific reports$$v7$$x2045-2322$$y2017
000837599 8564_ $$uhttps://juser.fz-juelich.de/record/837599/files/s41598-017-10208-1.pdf$$yOpenAccess
000837599 8564_ $$uhttps://juser.fz-juelich.de/record/837599/files/s41598-017-10208-1.gif?subformat=icon$$xicon$$yOpenAccess
000837599 8564_ $$uhttps://juser.fz-juelich.de/record/837599/files/s41598-017-10208-1.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000837599 8564_ $$uhttps://juser.fz-juelich.de/record/837599/files/s41598-017-10208-1.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000837599 8564_ $$uhttps://juser.fz-juelich.de/record/837599/files/s41598-017-10208-1.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000837599 8564_ $$uhttps://juser.fz-juelich.de/record/837599/files/s41598-017-10208-1.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000837599 909CO $$ooai:juser.fz-juelich.de:837599$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000837599 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130943$$aForschungszentrum Jülich$$b4$$kFZJ
000837599 9131_ $$0G:(DE-HGF)POF3-144$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000837599 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x1
000837599 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6212$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x2
000837599 9131_ $$0G:(DE-HGF)POF3-621$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6213$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vIn-house research on the structure, dynamics and function of matter$$x3
000837599 9131_ $$0G:(DE-HGF)POF3-623$$1G:(DE-HGF)POF3-620$$2G:(DE-HGF)POF3-600$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$9G:(DE-HGF)POF3-6G4$$aDE-HGF$$bForschungsbereich Materie$$lVon Materie zu Materialien und Leben$$vFacility topic: Neutrons for Research on Condensed Matter$$x4
000837599 9141_ $$y2017
000837599 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837599 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000837599 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000837599 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000837599 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2015
000837599 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSCI REP-UK : 2015
000837599 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000837599 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000837599 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000837599 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837599 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837599 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000837599 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000837599 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000837599 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000837599 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837599 9201_ $$0I:(DE-Juel1)JCNS-2-20110106$$kJCNS-2$$lStreumethoden$$x0
000837599 9201_ $$0I:(DE-Juel1)PGI-4-20110106$$kPGI-4$$lStreumethoden$$x1
000837599 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000837599 9201_ $$0I:(DE-Juel1)JCNS-ILL-20110128$$kJCNS-ILL$$lJCNS-ILL$$x3
000837599 9801_ $$aFullTexts
000837599 980__ $$ajournal
000837599 980__ $$aVDB
000837599 980__ $$aUNRESTRICTED
000837599 980__ $$aI:(DE-Juel1)JCNS-2-20110106
000837599 980__ $$aI:(DE-Juel1)PGI-4-20110106
000837599 980__ $$aI:(DE-82)080009_20140620
000837599 980__ $$aI:(DE-Juel1)JCNS-ILL-20110128
000837599 981__ $$aI:(DE-Juel1)JCNS-2-20110106