000837604 001__ 837604
000837604 005__ 20240712112844.0
000837604 0247_ $$2doi$$a10.1016/j.ssi.2017.07.023
000837604 0247_ $$2ISSN$$a0167-2738
000837604 0247_ $$2ISSN$$a1872-7689
000837604 0247_ $$2WOS$$aWOS:000412266100025
000837604 037__ $$aFZJ-2017-06483
000837604 082__ $$a530
000837604 1001_ $$0P:(DE-Juel1)166415$$aMertens, Andreas$$b0$$eCorresponding author$$ufzj
000837604 245__ $$aSuperionic bulk conductivity in Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 solid electrolyte
000837604 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2017
000837604 3367_ $$2DRIVER$$aarticle
000837604 3367_ $$2DataCite$$aOutput Types/Journal article
000837604 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1505458771_21920
000837604 3367_ $$2BibTeX$$aARTICLE
000837604 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837604 3367_ $$00$$2EndNote$$aJournal Article
000837604 520__ $$aSuperionic lithium-ion conductors of NASICON structure are promising solid electrolytes for all solid-state batteries. But still further improvement of the ionic conductivity is necessary to be competitive with today's liquid electrolytes. This requires a thorough understanding of grain and grain boundary ion transport properties. However, distinguishing between the impedance contributions of both regimes proved to be difficult before, due to their overlapping time constants, which often necessitate measurements below 0 °C. In contrast, we analyze a Li1.3Al0.3Ti1.7(PO4)3 (LATP) solid electrolyte under battery operation temperatures between 10 °C and 50 °C by impedance measurements in combination with a distribution of relaxation time analysis in two dimensions (2D-DRT). By correlation with microstructural observation in the laser-scanning microscope (LSM), scanning electron microscope (SEM) and atomic force microscope (AFM) the dominating ion transport pathway is determined within a bricklayer model on a macroscopic scale. Moreover, the ionic conductivities of grain and grain boundary are calculated. For the grain, conductivity values of 2 mS cm−1 at room temperature are found. The ion transport activation energies of both domains are determined to be 182 meV and 430 meV, respectively. Optimization routes for further ionic conductivity improvements are derived.
000837604 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000837604 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000837604 588__ $$aDataset connected to CrossRef
000837604 7001_ $$0P:(DE-Juel1)161141$$aYu, Shicheng$$b1$$ufzj
000837604 7001_ $$0P:(DE-Juel1)169444$$aSchön, Nino$$b2$$ufzj
000837604 7001_ $$0P:(DE-Juel1)167214$$aGuenduez, Deniz$$b3$$ufzj
000837604 7001_ $$0P:(DE-Juel1)161208$$aTempel, Hermann$$b4$$ufzj
000837604 7001_ $$0P:(DE-Juel1)161348$$aSchierholz, Roland$$b5$$ufzj
000837604 7001_ $$0P:(DE-Juel1)167581$$aHausen, Florian$$b6$$ufzj
000837604 7001_ $$0P:(DE-Juel1)157700$$aKungl, Hans$$b7$$ufzj
000837604 7001_ $$0P:(DE-Juel1)162401$$aGranwehr, Josef$$b8$$ufzj
000837604 7001_ $$0P:(DE-Juel1)156123$$aEichel, Rüdiger-A.$$b9$$ufzj
000837604 773__ $$0PERI:(DE-600)1500750-9$$a10.1016/j.ssi.2017.07.023$$gVol. 309, p. 180 - 186$$p180 - 186$$tSolid state ionics$$v309$$x0167-2738$$y2017
000837604 8564_ $$uhttps://juser.fz-juelich.de/record/837604/files/1-s2.0-S0167273817302655-main.pdf$$yRestricted
000837604 8564_ $$uhttps://juser.fz-juelich.de/record/837604/files/1-s2.0-S0167273817302655-main.gif?subformat=icon$$xicon$$yRestricted
000837604 8564_ $$uhttps://juser.fz-juelich.de/record/837604/files/1-s2.0-S0167273817302655-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000837604 8564_ $$uhttps://juser.fz-juelich.de/record/837604/files/1-s2.0-S0167273817302655-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000837604 8564_ $$uhttps://juser.fz-juelich.de/record/837604/files/1-s2.0-S0167273817302655-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000837604 8564_ $$uhttps://juser.fz-juelich.de/record/837604/files/1-s2.0-S0167273817302655-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000837604 909CO $$ooai:juser.fz-juelich.de:837604$$pVDB
000837604 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)166415$$aForschungszentrum Jülich$$b0$$kFZJ
000837604 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)166415$$aRWTH Aachen$$b0$$kRWTH
000837604 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161141$$aForschungszentrum Jülich$$b1$$kFZJ
000837604 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)161141$$aRWTH Aachen$$b1$$kRWTH
000837604 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169444$$aForschungszentrum Jülich$$b2$$kFZJ
000837604 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)169444$$aRWTH Aachen$$b2$$kRWTH
000837604 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167214$$aForschungszentrum Jülich$$b3$$kFZJ
000837604 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)167214$$aRWTH Aachen$$b3$$kRWTH
000837604 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161208$$aForschungszentrum Jülich$$b4$$kFZJ
000837604 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161348$$aForschungszentrum Jülich$$b5$$kFZJ
000837604 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167581$$aForschungszentrum Jülich$$b6$$kFZJ
000837604 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)167581$$aRWTH Aachen$$b6$$kRWTH
000837604 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157700$$aForschungszentrum Jülich$$b7$$kFZJ
000837604 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162401$$aForschungszentrum Jülich$$b8$$kFZJ
000837604 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)162401$$aRWTH Aachen$$b8$$kRWTH
000837604 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156123$$aForschungszentrum Jülich$$b9$$kFZJ
000837604 9101_ $$0I:(DE-588b)36225-6$$6P:(DE-Juel1)156123$$aRWTH Aachen$$b9$$kRWTH
000837604 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000837604 9141_ $$y2017
000837604 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000837604 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSOLID STATE IONICS : 2015
000837604 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837604 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000837604 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000837604 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837604 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000837604 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837604 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837604 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000837604 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000837604 920__ $$lyes
000837604 9201_ $$0I:(DE-Juel1)IEK-9-20110218$$kIEK-9$$lGrundlagen der Elektrochemie$$x0
000837604 980__ $$ajournal
000837604 980__ $$aVDB
000837604 980__ $$aI:(DE-Juel1)IEK-9-20110218
000837604 980__ $$aUNRESTRICTED
000837604 981__ $$aI:(DE-Juel1)IET-1-20110218