001     837604
005     20240712112844.0
024 7 _ |a 10.1016/j.ssi.2017.07.023
|2 doi
024 7 _ |a 0167-2738
|2 ISSN
024 7 _ |a 1872-7689
|2 ISSN
024 7 _ |a WOS:000412266100025
|2 WOS
037 _ _ |a FZJ-2017-06483
082 _ _ |a 530
100 1 _ |a Mertens, Andreas
|0 P:(DE-Juel1)166415
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Superionic bulk conductivity in Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 solid electrolyte
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1505458771_21920
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Superionic lithium-ion conductors of NASICON structure are promising solid electrolytes for all solid-state batteries. But still further improvement of the ionic conductivity is necessary to be competitive with today's liquid electrolytes. This requires a thorough understanding of grain and grain boundary ion transport properties. However, distinguishing between the impedance contributions of both regimes proved to be difficult before, due to their overlapping time constants, which often necessitate measurements below 0 °C. In contrast, we analyze a Li1.3Al0.3Ti1.7(PO4)3 (LATP) solid electrolyte under battery operation temperatures between 10 °C and 50 °C by impedance measurements in combination with a distribution of relaxation time analysis in two dimensions (2D-DRT). By correlation with microstructural observation in the laser-scanning microscope (LSM), scanning electron microscope (SEM) and atomic force microscope (AFM) the dominating ion transport pathway is determined within a bricklayer model on a macroscopic scale. Moreover, the ionic conductivities of grain and grain boundary are calculated. For the grain, conductivity values of 2 mS cm−1 at room temperature are found. The ion transport activation energies of both domains are determined to be 182 meV and 430 meV, respectively. Optimization routes for further ionic conductivity improvements are derived.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 1
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Yu, Shicheng
|0 P:(DE-Juel1)161141
|b 1
|u fzj
700 1 _ |a Schön, Nino
|0 P:(DE-Juel1)169444
|b 2
|u fzj
700 1 _ |a Guenduez, Deniz
|0 P:(DE-Juel1)167214
|b 3
|u fzj
700 1 _ |a Tempel, Hermann
|0 P:(DE-Juel1)161208
|b 4
|u fzj
700 1 _ |a Schierholz, Roland
|0 P:(DE-Juel1)161348
|b 5
|u fzj
700 1 _ |a Hausen, Florian
|0 P:(DE-Juel1)167581
|b 6
|u fzj
700 1 _ |a Kungl, Hans
|0 P:(DE-Juel1)157700
|b 7
|u fzj
700 1 _ |a Granwehr, Josef
|0 P:(DE-Juel1)162401
|b 8
|u fzj
700 1 _ |a Eichel, Rüdiger-A.
|0 P:(DE-Juel1)156123
|b 9
|u fzj
773 _ _ |a 10.1016/j.ssi.2017.07.023
|g Vol. 309, p. 180 - 186
|0 PERI:(DE-600)1500750-9
|p 180 - 186
|t Solid state ionics
|v 309
|y 2017
|x 0167-2738
856 4 _ |u https://juser.fz-juelich.de/record/837604/files/1-s2.0-S0167273817302655-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837604/files/1-s2.0-S0167273817302655-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837604/files/1-s2.0-S0167273817302655-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837604/files/1-s2.0-S0167273817302655-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837604/files/1-s2.0-S0167273817302655-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837604/files/1-s2.0-S0167273817302655-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:837604
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)166415
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 0
|6 P:(DE-Juel1)166415
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)161141
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 1
|6 P:(DE-Juel1)161141
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)169444
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 2
|6 P:(DE-Juel1)169444
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)167214
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 3
|6 P:(DE-Juel1)167214
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)161208
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)161348
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)167581
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 6
|6 P:(DE-Juel1)167581
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)157700
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)162401
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 8
|6 P:(DE-Juel1)162401
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)156123
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 9
|6 P:(DE-Juel1)156123
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b SOLID STATE IONICS : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-9-20110218
|k IEK-9
|l Grundlagen der Elektrochemie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-9-20110218
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IET-1-20110218


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21