Home > Publications database > Superionic bulk conductivity in Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 solid electrolyte > print |
001 | 837604 | ||
005 | 20240712112844.0 | ||
024 | 7 | _ | |a 10.1016/j.ssi.2017.07.023 |2 doi |
024 | 7 | _ | |a 0167-2738 |2 ISSN |
024 | 7 | _ | |a 1872-7689 |2 ISSN |
024 | 7 | _ | |a WOS:000412266100025 |2 WOS |
037 | _ | _ | |a FZJ-2017-06483 |
082 | _ | _ | |a 530 |
100 | 1 | _ | |a Mertens, Andreas |0 P:(DE-Juel1)166415 |b 0 |e Corresponding author |u fzj |
245 | _ | _ | |a Superionic bulk conductivity in Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 solid electrolyte |
260 | _ | _ | |a Amsterdam [u.a.] |c 2017 |b Elsevier Science |
336 | 7 | _ | |a article |2 DRIVER |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |b journal |m journal |0 PUB:(DE-HGF)16 |s 1505458771_21920 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
520 | _ | _ | |a Superionic lithium-ion conductors of NASICON structure are promising solid electrolytes for all solid-state batteries. But still further improvement of the ionic conductivity is necessary to be competitive with today's liquid electrolytes. This requires a thorough understanding of grain and grain boundary ion transport properties. However, distinguishing between the impedance contributions of both regimes proved to be difficult before, due to their overlapping time constants, which often necessitate measurements below 0 °C. In contrast, we analyze a Li1.3Al0.3Ti1.7(PO4)3 (LATP) solid electrolyte under battery operation temperatures between 10 °C and 50 °C by impedance measurements in combination with a distribution of relaxation time analysis in two dimensions (2D-DRT). By correlation with microstructural observation in the laser-scanning microscope (LSM), scanning electron microscope (SEM) and atomic force microscope (AFM) the dominating ion transport pathway is determined within a bricklayer model on a macroscopic scale. Moreover, the ionic conductivities of grain and grain boundary are calculated. For the grain, conductivity values of 2 mS cm−1 at room temperature are found. The ion transport activation energies of both domains are determined to be 182 meV and 430 meV, respectively. Optimization routes for further ionic conductivity improvements are derived. |
536 | _ | _ | |a 131 - Electrochemical Storage (POF3-131) |0 G:(DE-HGF)POF3-131 |c POF3-131 |f POF III |x 0 |
536 | _ | _ | |0 G:(DE-Juel1)HITEC-20170406 |x 1 |c HITEC-20170406 |a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406) |
588 | _ | _ | |a Dataset connected to CrossRef |
700 | 1 | _ | |a Yu, Shicheng |0 P:(DE-Juel1)161141 |b 1 |u fzj |
700 | 1 | _ | |a Schön, Nino |0 P:(DE-Juel1)169444 |b 2 |u fzj |
700 | 1 | _ | |a Guenduez, Deniz |0 P:(DE-Juel1)167214 |b 3 |u fzj |
700 | 1 | _ | |a Tempel, Hermann |0 P:(DE-Juel1)161208 |b 4 |u fzj |
700 | 1 | _ | |a Schierholz, Roland |0 P:(DE-Juel1)161348 |b 5 |u fzj |
700 | 1 | _ | |a Hausen, Florian |0 P:(DE-Juel1)167581 |b 6 |u fzj |
700 | 1 | _ | |a Kungl, Hans |0 P:(DE-Juel1)157700 |b 7 |u fzj |
700 | 1 | _ | |a Granwehr, Josef |0 P:(DE-Juel1)162401 |b 8 |u fzj |
700 | 1 | _ | |a Eichel, Rüdiger-A. |0 P:(DE-Juel1)156123 |b 9 |u fzj |
773 | _ | _ | |a 10.1016/j.ssi.2017.07.023 |g Vol. 309, p. 180 - 186 |0 PERI:(DE-600)1500750-9 |p 180 - 186 |t Solid state ionics |v 309 |y 2017 |x 0167-2738 |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/837604/files/1-s2.0-S0167273817302655-main.pdf |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/837604/files/1-s2.0-S0167273817302655-main.gif?subformat=icon |x icon |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/837604/files/1-s2.0-S0167273817302655-main.jpg?subformat=icon-1440 |x icon-1440 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/837604/files/1-s2.0-S0167273817302655-main.jpg?subformat=icon-180 |x icon-180 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/837604/files/1-s2.0-S0167273817302655-main.jpg?subformat=icon-640 |x icon-640 |y Restricted |
856 | 4 | _ | |u https://juser.fz-juelich.de/record/837604/files/1-s2.0-S0167273817302655-main.pdf?subformat=pdfa |x pdfa |y Restricted |
909 | C | O | |o oai:juser.fz-juelich.de:837604 |p VDB |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 0 |6 P:(DE-Juel1)166415 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 0 |6 P:(DE-Juel1)166415 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 1 |6 P:(DE-Juel1)161141 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 1 |6 P:(DE-Juel1)161141 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 2 |6 P:(DE-Juel1)169444 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 2 |6 P:(DE-Juel1)169444 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 3 |6 P:(DE-Juel1)167214 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 3 |6 P:(DE-Juel1)167214 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 4 |6 P:(DE-Juel1)161208 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 5 |6 P:(DE-Juel1)161348 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 6 |6 P:(DE-Juel1)167581 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 6 |6 P:(DE-Juel1)167581 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 7 |6 P:(DE-Juel1)157700 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 8 |6 P:(DE-Juel1)162401 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 8 |6 P:(DE-Juel1)162401 |
910 | 1 | _ | |a Forschungszentrum Jülich |0 I:(DE-588b)5008462-8 |k FZJ |b 9 |6 P:(DE-Juel1)156123 |
910 | 1 | _ | |a RWTH Aachen |0 I:(DE-588b)36225-6 |k RWTH |b 9 |6 P:(DE-Juel1)156123 |
913 | 1 | _ | |a DE-HGF |l Speicher und vernetzte Infrastrukturen |1 G:(DE-HGF)POF3-130 |0 G:(DE-HGF)POF3-131 |2 G:(DE-HGF)POF3-100 |v Electrochemical Storage |x 0 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF3 |b Energie |
914 | 1 | _ | |y 2017 |
915 | _ | _ | |a Nationallizenz |0 StatID:(DE-HGF)0420 |2 StatID |
915 | _ | _ | |a JCR |0 StatID:(DE-HGF)0100 |2 StatID |b SOLID STATE IONICS : 2015 |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0200 |2 StatID |b SCOPUS |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0600 |2 StatID |b Ebsco Academic Search |
915 | _ | _ | |a Peer Review |0 StatID:(DE-HGF)0030 |2 StatID |b ASC |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0199 |2 StatID |b Thomson Reuters Master Journal List |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0110 |2 StatID |b Science Citation Index |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)0150 |2 StatID |b Web of Science Core Collection |
915 | _ | _ | |a WoS |0 StatID:(DE-HGF)0111 |2 StatID |b Science Citation Index Expanded |
915 | _ | _ | |a DBCoverage |0 StatID:(DE-HGF)1150 |2 StatID |b Current Contents - Physical, Chemical and Earth Sciences |
915 | _ | _ | |a IF < 5 |0 StatID:(DE-HGF)9900 |2 StatID |
920 | _ | _ | |l yes |
920 | 1 | _ | |0 I:(DE-Juel1)IEK-9-20110218 |k IEK-9 |l Grundlagen der Elektrochemie |x 0 |
980 | _ | _ | |a journal |
980 | _ | _ | |a VDB |
980 | _ | _ | |a I:(DE-Juel1)IEK-9-20110218 |
980 | _ | _ | |a UNRESTRICTED |
981 | _ | _ | |a I:(DE-Juel1)IET-1-20110218 |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|