001     837607
005     20240711085705.0
024 7 _ |a 10.1016/j.jpowsour.2017.07.072
|2 doi
024 7 _ |a 0378-7753
|2 ISSN
024 7 _ |a 1873-2755
|2 ISSN
024 7 _ |a 2128/15285
|2 Handle
024 7 _ |a WOS:000411544300023
|2 WOS
037 _ _ |a FZJ-2017-06486
082 _ _ |a 620
100 1 _ |a Grünwald, Nikolas
|0 P:(DE-Juel1)165868
|b 0
|e Corresponding author
245 _ _ |a Self-healing atmospheric plasma sprayed Mn 1.0 Co 1.9 Fe 0.1 O 4 protective interconnector coatings for solid oxide fuel cells
260 _ _ |a New York, NY [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1505459034_21920
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Dense coatings on metallic interconnectors are necessary to suppress chromium poisoning of SOFC cathodes. Atmospherically plasma sprayed (APS) Mn1.0Co1.9Fe0.1O4 (MCF) protective layers demonstrated reduced chromium related degradation in laboratory and stack tests. Previous analyses revealed strong microstructural changes comparing the coating's as-sprayed and operated condition. This work concentrates on the layer-densification and crack-healing observed by annealing APS-MCF in air, which simulates the cathode operation conditions. The effect is described by a volume expansion induced by a phase transformation. Reducing conditions during the spray process lead to a deposition of the MCF in a metastable rock salt configuration. Annealing in air activates diffusion processes for a phase transformation to the low temperature stable spinel phase (T < 1050 °C). This transformation is connected to an oxygen incorporation which occurs at regions facing high oxygen partial pressures, as there are the sample surface, cracks and pore surfaces. Calculations reveal a volume expansion induced by the oxygen uptake which seals the cracks and densifies the coating. The process decelerates when the cracks are closed, as the gas route is blocked and further oxidation continues over solid state diffusion. The self-healing abilities of metastable APS coatings could be interesting for other applications.
536 _ _ |a 135 - Fuel Cells (POF3-135)
|0 G:(DE-HGF)POF3-135
|c POF3-135
|f POF III
|x 0
536 _ _ |a SOFC - Solid Oxide Fuel Cell (SOFC-20140602)
|0 G:(DE-Juel1)SOFC-20140602
|c SOFC-20140602
|f SOFC
|x 1
536 _ _ |0 G:(DE-Juel1)HITEC-20170406
|x 2
|c HITEC-20170406
|a HITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Sebold, Doris
|0 P:(DE-Juel1)129662
|b 1
700 1 _ |a Sohn, Yoo Jung
|0 P:(DE-Juel1)159368
|b 2
|u fzj
700 1 _ |a Menzler, Norbert H.
|0 P:(DE-Juel1)129636
|b 3
|u fzj
700 1 _ |a Vaßen, Robert
|0 P:(DE-Juel1)129670
|b 4
|u fzj
773 _ _ |a 10.1016/j.jpowsour.2017.07.072
|g Vol. 363, p. 185 - 192
|0 PERI:(DE-600)1491915-1
|p 185 - 192
|t Journal of power sources
|v 363
|y 2017
|x 0378-7753
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/837607/files/Manuscript-%20post%20referee.pdf
856 4 _ |y OpenAccess
|x icon
|u https://juser.fz-juelich.de/record/837607/files/Manuscript-%20post%20referee.gif?subformat=icon
856 4 _ |y OpenAccess
|x icon-1440
|u https://juser.fz-juelich.de/record/837607/files/Manuscript-%20post%20referee.jpg?subformat=icon-1440
856 4 _ |y OpenAccess
|x icon-180
|u https://juser.fz-juelich.de/record/837607/files/Manuscript-%20post%20referee.jpg?subformat=icon-180
856 4 _ |y OpenAccess
|x icon-640
|u https://juser.fz-juelich.de/record/837607/files/Manuscript-%20post%20referee.jpg?subformat=icon-640
856 4 _ |y OpenAccess
|x pdfa
|u https://juser.fz-juelich.de/record/837607/files/Manuscript-%20post%20referee.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:837607
|p openaire
|p driver
|p open_access
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165868
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)129662
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)159368
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129636
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129670
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-135
|2 G:(DE-HGF)POF3-100
|v Fuel Cells
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J POWER SOURCES : 2015
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J POWER SOURCES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21