000837636 001__ 837636
000837636 005__ 20240711113729.0
000837636 0247_ $$2doi$$a10.1016/j.tsf.2017.06.038
000837636 0247_ $$2ISSN$$a0040-6090
000837636 0247_ $$2ISSN$$a1879-2731
000837636 0247_ $$2WOS$$aWOS:000408037800064
000837636 037__ $$aFZJ-2017-06515
000837636 082__ $$a070
000837636 1001_ $$0P:(DE-Juel1)164145$$aEngels, J.$$b0
000837636 245__ $$aThin film proton conducting membranes for micro-solid oxide fuel cells by chemical solution deposition
000837636 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2017
000837636 3367_ $$2DRIVER$$aarticle
000837636 3367_ $$2DataCite$$aOutput Types/Journal article
000837636 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1505453270_21925
000837636 3367_ $$2BibTeX$$aARTICLE
000837636 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837636 3367_ $$00$$2EndNote$$aJournal Article
000837636 520__ $$aMicro solid oxide fuel cells (μ-SOFC) were manufactured with perovskite type proton conductors on silicon substrates and with structured Pt-grid electrodes. In order to miniaturize the μ-SOFCs and to shorten the ion path through the electrolyte, the thin film proton conductors were only ~ 510 nm thick. The thin films consist of 10 mol% yttrium-doped BaZrO3 (BZY10) and they were deposited by means of chemical solution deposition (CSD). CSD was applied, because it represents a highly attractive fabrication method, considering the relatively low investment costs and flexibility with regard to stoichiometry. The backsides of the μ-SOFCs on the substrates were opened by wet chemical and plasma etching to form the freestanding membranes. The completed μ-SOFCs resist up to a temperature of 450 °C. Their electrical properties, such as permittivity, and resistivity were investigated. By means of electrochemical impedance spectroscopy (EIS) in the temperature range of 100 °C to 450 °C, the resistivity properties and the activation energies of the model μ-SOFC were studied with humid hydrogen in nitrogen at the anode and different oxygen partial pressures at the cathode. The results provide a clear hint for a dominating protonic defect transport mechanism in the electrolyte. In the 450 °C measurement, the model μ-SOFCs reached an open circuit voltage of 600 mV with 100% oxygen at the cathode and humid hydrogen in nitrogen at the anode.
000837636 536__ $$0G:(DE-HGF)POF3-524$$a524 - Controlling Collective States (POF3-524)$$cPOF3-524$$fPOF III$$x0
000837636 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x1
000837636 588__ $$aDataset connected to CrossRef
000837636 7001_ $$0P:(DE-HGF)0$$aGriesche, D.$$b1
000837636 7001_ $$0P:(DE-Juel1)131022$$aWaser, R.$$b2
000837636 7001_ $$0P:(DE-HGF)0$$aSchneller, T.$$b3$$eCorresponding author
000837636 773__ $$0PERI:(DE-600)1482896-0$$a10.1016/j.tsf.2017.06.038$$gVol. 636, p. 446 - 457$$p446 - 457$$tThin solid films$$v636$$x0040-6090$$y2017
000837636 8564_ $$uhttps://juser.fz-juelich.de/record/837636/files/1-s2.0-S0040609017304741-main.pdf$$yRestricted
000837636 8564_ $$uhttps://juser.fz-juelich.de/record/837636/files/1-s2.0-S0040609017304741-main.gif?subformat=icon$$xicon$$yRestricted
000837636 8564_ $$uhttps://juser.fz-juelich.de/record/837636/files/1-s2.0-S0040609017304741-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000837636 8564_ $$uhttps://juser.fz-juelich.de/record/837636/files/1-s2.0-S0040609017304741-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000837636 8564_ $$uhttps://juser.fz-juelich.de/record/837636/files/1-s2.0-S0040609017304741-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000837636 8564_ $$uhttps://juser.fz-juelich.de/record/837636/files/1-s2.0-S0040609017304741-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000837636 909CO $$ooai:juser.fz-juelich.de:837636$$pVDB
000837636 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)164145$$aForschungszentrum Jülich$$b0$$kFZJ
000837636 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131022$$aForschungszentrum Jülich$$b2$$kFZJ
000837636 9131_ $$0G:(DE-HGF)POF3-524$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Collective States$$x0
000837636 9141_ $$y2017
000837636 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000837636 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bTHIN SOLID FILMS : 2015
000837636 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837636 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000837636 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000837636 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000837636 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837636 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000837636 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837636 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837636 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000837636 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000837636 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000837636 9201_ $$0I:(DE-Juel1)PGI-7-20110106$$kPGI-7$$lElektronische Materialien$$x0
000837636 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x1
000837636 9201_ $$0I:(DE-Juel1)IEK-4-20101013$$kIEK-4$$lPlasmaphysik$$x2
000837636 980__ $$ajournal
000837636 980__ $$aVDB
000837636 980__ $$aI:(DE-Juel1)PGI-7-20110106
000837636 980__ $$aI:(DE-82)080009_20140620
000837636 980__ $$aI:(DE-Juel1)IEK-4-20101013
000837636 980__ $$aUNRESTRICTED
000837636 981__ $$aI:(DE-Juel1)IFN-1-20101013