000837640 001__ 837640
000837640 005__ 20210129231409.0
000837640 0247_ $$2doi$$a10.1002/hbm.23763
000837640 0247_ $$2ISSN$$a1065-9471
000837640 0247_ $$2ISSN$$a1097-0193
000837640 0247_ $$2pmid$$apmid:28876500
000837640 0247_ $$2WOS$$aWOS:000414683400002
000837640 0247_ $$2altmetric$$aaltmetric:24898882
000837640 037__ $$aFZJ-2017-06518
000837640 041__ $$aEnglish
000837640 082__ $$a610
000837640 1001_ $$0P:(DE-Juel1)161305$$aPläschke, Rachel N.$$b0
000837640 245__ $$aOn the integrity of functional brain networks in schizophrenia, Parkinson's disease, and advanced age: Evidence from connectivity-based single-subject classification
000837640 260__ $$aNew York, NY$$bWiley-Liss$$c2017
000837640 3367_ $$2DRIVER$$aarticle
000837640 3367_ $$2DataCite$$aOutput Types/Journal article
000837640 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1510316220_27066
000837640 3367_ $$2BibTeX$$aARTICLE
000837640 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837640 3367_ $$00$$2EndNote$$aJournal Article
000837640 520__ $$aPrevious whole-brain functional connectivity studies achieved successful classifications of patients and healthy controls but only offered limited specificity as to affected brain systems. Here, we examined whether the connectivity patterns of functional systems affected in schizophrenia (SCZ), Parkinson's disease (PD), or normal aging equally translate into high classification accuracies for these conditions. We compared classification performance between pre-defined networks for each group and, for any given network, between groups. Separate support vector machine classifications of 86 SCZ patients, 80 PD patients, and 95 older adults relative to their matched healthy/young controls, respectively, were performed on functional connectivity in 12 task-based, meta-analytically defined networks using 25 replications of a nested 10-fold cross-validation scheme. Classification performance of the various networks clearly differed between conditions, as those networks that best classified one disease were usually non-informative for the other. For SCZ, but not PD, emotion-processing, empathy, and cognitive action control networks distinguished patients most accurately from controls. For PD, but not SCZ, networks subserving autobiographical or semantic memory, motor execution, and theory-of-mind cognition yielded the best classifications. In contrast, young–old classification was excellent based on all networks and outperformed both clinical classifications. Our pattern-classification approach captured associations between clinical and developmental conditions and functional network integrity with a higher level of specificity than did previous whole-brain analyses. Taken together, our results support resting-state connectivity as a marker of functional dysregulation in specific networks known to be affected by SCZ and PD, while suggesting that aging affects network integrity in a more global way.
000837640 536__ $$0G:(DE-HGF)POF3-572$$a572 - (Dys-)function and Plasticity (POF3-572)$$cPOF3-572$$fPOF III$$x0
000837640 588__ $$aDataset connected to CrossRef
000837640 7001_ $$0P:(DE-Juel1)131855$$aCieslik, Edna$$b1
000837640 7001_ $$0P:(DE-Juel1)131699$$aMüller, Veronika$$b2
000837640 7001_ $$0P:(DE-Juel1)131684$$aHoffstaedter, Felix$$b3
000837640 7001_ $$0P:(DE-Juel1)167223$$aPlachti, Anna$$b4
000837640 7001_ $$0P:(DE-Juel1)161460$$aVarikuti, Deepthi$$b5
000837640 7001_ $$0P:(DE-Juel1)167222$$aGoosses, Mareike$$b6
000837640 7001_ $$0P:(DE-Juel1)161174$$aLatz, Anne$$b7
000837640 7001_ $$0P:(DE-Juel1)131675$$aCaspers, Svenja$$b8
000837640 7001_ $$0P:(DE-Juel1)145386$$aJockwitz, Christiane$$b9
000837640 7001_ $$0P:(DE-HGF)0$$aMoebus, Susanne$$b10
000837640 7001_ $$0P:(DE-HGF)0$$aGruber, Oliver$$b11
000837640 7001_ $$0P:(DE-HGF)0$$aEickhoff, Claudia R.$$b12
000837640 7001_ $$0P:(DE-Juel1)162203$$aReetz, Kathrin$$b13
000837640 7001_ $$0P:(DE-HGF)0$$aHeller, Julia$$b14
000837640 7001_ $$0P:(DE-HGF)0$$aSüdmeyer, Martin$$b15
000837640 7001_ $$0P:(DE-HGF)0$$aMathys, Christian$$b16
000837640 7001_ $$0P:(DE-Juel1)144344$$aCaspers, Julian$$b17
000837640 7001_ $$0P:(DE-Juel1)161406$$aGrefkes, Christian$$b18
000837640 7001_ $$0P:(DE-HGF)0$$aKalenscher, Tobias$$b19
000837640 7001_ $$0P:(DE-Juel1)131693$$aLangner, Robert$$b20
000837640 7001_ $$0P:(DE-Juel1)131678$$aEickhoff, Simon$$b21$$eCorresponding author
000837640 773__ $$0PERI:(DE-600)1492703-2$$a10.1002/hbm.23763$$n12$$p5845–5858$$tHuman brain mapping$$v38$$x1065-9471$$y2017
000837640 8564_ $$uhttps://juser.fz-juelich.de/record/837640/files/Pl-schke_et_al-2017-Human_Brain_Mapping.pdf$$yRestricted
000837640 8564_ $$uhttps://juser.fz-juelich.de/record/837640/files/Pl-schke_et_al-2017-Human_Brain_Mapping.gif?subformat=icon$$xicon$$yRestricted
000837640 8564_ $$uhttps://juser.fz-juelich.de/record/837640/files/Pl-schke_et_al-2017-Human_Brain_Mapping.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000837640 8564_ $$uhttps://juser.fz-juelich.de/record/837640/files/Pl-schke_et_al-2017-Human_Brain_Mapping.jpg?subformat=icon-180$$xicon-180$$yRestricted
000837640 8564_ $$uhttps://juser.fz-juelich.de/record/837640/files/Pl-schke_et_al-2017-Human_Brain_Mapping.jpg?subformat=icon-640$$xicon-640$$yRestricted
000837640 8564_ $$uhttps://juser.fz-juelich.de/record/837640/files/Pl-schke_et_al-2017-Human_Brain_Mapping.pdf?subformat=pdfa$$xpdfa$$yRestricted
000837640 909CO $$ooai:juser.fz-juelich.de:837640$$pVDB
000837640 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161305$$aForschungszentrum Jülich$$b0$$kFZJ
000837640 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131855$$aForschungszentrum Jülich$$b1$$kFZJ
000837640 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131699$$aForschungszentrum Jülich$$b2$$kFZJ
000837640 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131684$$aForschungszentrum Jülich$$b3$$kFZJ
000837640 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167223$$aForschungszentrum Jülich$$b4$$kFZJ
000837640 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161460$$aForschungszentrum Jülich$$b5$$kFZJ
000837640 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)167222$$a INM-1$$b6
000837640 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167222$$aForschungszentrum Jülich$$b6$$kFZJ
000837640 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161174$$aForschungszentrum Jülich$$b7$$kFZJ
000837640 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131675$$aForschungszentrum Jülich$$b8$$kFZJ
000837640 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145386$$aForschungszentrum Jülich$$b9$$kFZJ
000837640 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b12$$kFZJ
000837640 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a INM-7$$b12
000837640 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a INM-1$$b12
000837640 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162203$$aForschungszentrum Jülich$$b13$$kFZJ
000837640 9101_ $$0I:(DE-HGF)0$$6P:(DE-Juel1)162203$$a INM-11$$b13
000837640 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b14$$kFZJ
000837640 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144344$$aForschungszentrum Jülich$$b17$$kFZJ
000837640 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161406$$aForschungszentrum Jülich$$b18$$kFZJ
000837640 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131693$$aForschungszentrum Jülich$$b20$$kFZJ
000837640 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131678$$aForschungszentrum Jülich$$b21$$kFZJ
000837640 9101_ $$0I:(DE-HGF)0$$6P:(DE-HGF)0$$a INM-1$$b21
000837640 9131_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000837640 9141_ $$y2017
000837640 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000837640 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837640 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000837640 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000837640 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bHUM BRAIN MAPP : 2015
000837640 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837640 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000837640 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837640 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837640 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000837640 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000837640 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000837640 920__ $$lyes
000837640 9201_ $$0I:(DE-Juel1)INM-7-20090406$$kINM-7$$lGehirn & Verhalten$$x0
000837640 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000837640 9201_ $$0I:(DE-Juel1)INM-1-20090406$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x2
000837640 9201_ $$0I:(DE-Juel1)INM-3-20090406$$kINM-3$$lKognitive Neurowissenschaften$$x3
000837640 980__ $$ajournal
000837640 980__ $$aVDB
000837640 980__ $$aI:(DE-Juel1)INM-7-20090406
000837640 980__ $$aI:(DE-Juel1)INM-11-20170113
000837640 980__ $$aI:(DE-Juel1)INM-1-20090406
000837640 980__ $$aI:(DE-Juel1)INM-3-20090406
000837640 980__ $$aUNRESTRICTED