001     837640
005     20210129231409.0
024 7 _ |a 10.1002/hbm.23763
|2 doi
024 7 _ |a 1065-9471
|2 ISSN
024 7 _ |a 1097-0193
|2 ISSN
024 7 _ |a pmid:28876500
|2 pmid
024 7 _ |a WOS:000414683400002
|2 WOS
024 7 _ |a altmetric:24898882
|2 altmetric
037 _ _ |a FZJ-2017-06518
041 _ _ |a English
082 _ _ |a 610
100 1 _ |a Pläschke, Rachel N.
|0 P:(DE-Juel1)161305
|b 0
245 _ _ |a On the integrity of functional brain networks in schizophrenia, Parkinson's disease, and advanced age: Evidence from connectivity-based single-subject classification
260 _ _ |a New York, NY
|c 2017
|b Wiley-Liss
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1510316220_27066
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Previous whole-brain functional connectivity studies achieved successful classifications of patients and healthy controls but only offered limited specificity as to affected brain systems. Here, we examined whether the connectivity patterns of functional systems affected in schizophrenia (SCZ), Parkinson's disease (PD), or normal aging equally translate into high classification accuracies for these conditions. We compared classification performance between pre-defined networks for each group and, for any given network, between groups. Separate support vector machine classifications of 86 SCZ patients, 80 PD patients, and 95 older adults relative to their matched healthy/young controls, respectively, were performed on functional connectivity in 12 task-based, meta-analytically defined networks using 25 replications of a nested 10-fold cross-validation scheme. Classification performance of the various networks clearly differed between conditions, as those networks that best classified one disease were usually non-informative for the other. For SCZ, but not PD, emotion-processing, empathy, and cognitive action control networks distinguished patients most accurately from controls. For PD, but not SCZ, networks subserving autobiographical or semantic memory, motor execution, and theory-of-mind cognition yielded the best classifications. In contrast, young–old classification was excellent based on all networks and outperformed both clinical classifications. Our pattern-classification approach captured associations between clinical and developmental conditions and functional network integrity with a higher level of specificity than did previous whole-brain analyses. Taken together, our results support resting-state connectivity as a marker of functional dysregulation in specific networks known to be affected by SCZ and PD, while suggesting that aging affects network integrity in a more global way.
536 _ _ |a 572 - (Dys-)function and Plasticity (POF3-572)
|0 G:(DE-HGF)POF3-572
|c POF3-572
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Cieslik, Edna
|0 P:(DE-Juel1)131855
|b 1
700 1 _ |a Müller, Veronika
|0 P:(DE-Juel1)131699
|b 2
700 1 _ |a Hoffstaedter, Felix
|0 P:(DE-Juel1)131684
|b 3
700 1 _ |a Plachti, Anna
|0 P:(DE-Juel1)167223
|b 4
700 1 _ |a Varikuti, Deepthi
|0 P:(DE-Juel1)161460
|b 5
700 1 _ |a Goosses, Mareike
|0 P:(DE-Juel1)167222
|b 6
700 1 _ |a Latz, Anne
|0 P:(DE-Juel1)161174
|b 7
700 1 _ |a Caspers, Svenja
|0 P:(DE-Juel1)131675
|b 8
700 1 _ |a Jockwitz, Christiane
|0 P:(DE-Juel1)145386
|b 9
700 1 _ |a Moebus, Susanne
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Gruber, Oliver
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Eickhoff, Claudia R.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Reetz, Kathrin
|0 P:(DE-Juel1)162203
|b 13
700 1 _ |a Heller, Julia
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Südmeyer, Martin
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Mathys, Christian
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Caspers, Julian
|0 P:(DE-Juel1)144344
|b 17
700 1 _ |a Grefkes, Christian
|0 P:(DE-Juel1)161406
|b 18
700 1 _ |a Kalenscher, Tobias
|0 P:(DE-HGF)0
|b 19
700 1 _ |a Langner, Robert
|0 P:(DE-Juel1)131693
|b 20
700 1 _ |a Eickhoff, Simon
|0 P:(DE-Juel1)131678
|b 21
|e Corresponding author
773 _ _ |a 10.1002/hbm.23763
|0 PERI:(DE-600)1492703-2
|n 12
|p 5845–5858
|t Human brain mapping
|v 38
|y 2017
|x 1065-9471
856 4 _ |u https://juser.fz-juelich.de/record/837640/files/Pl-schke_et_al-2017-Human_Brain_Mapping.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837640/files/Pl-schke_et_al-2017-Human_Brain_Mapping.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837640/files/Pl-schke_et_al-2017-Human_Brain_Mapping.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837640/files/Pl-schke_et_al-2017-Human_Brain_Mapping.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837640/files/Pl-schke_et_al-2017-Human_Brain_Mapping.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837640/files/Pl-schke_et_al-2017-Human_Brain_Mapping.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:837640
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161305
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)131855
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)131699
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)131684
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)167223
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)161460
910 1 _ |a INM-1
|0 I:(DE-HGF)0
|b 6
|6 P:(DE-Juel1)167222
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)167222
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)161174
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)131675
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)145386
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-HGF)0
910 1 _ |a INM-7
|0 I:(DE-HGF)0
|b 12
|6 P:(DE-HGF)0
910 1 _ |a INM-1
|0 I:(DE-HGF)0
|b 12
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 13
|6 P:(DE-Juel1)162203
910 1 _ |a INM-11
|0 I:(DE-HGF)0
|b 13
|6 P:(DE-Juel1)162203
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-HGF)0
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 17
|6 P:(DE-Juel1)144344
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 18
|6 P:(DE-Juel1)161406
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 20
|6 P:(DE-Juel1)131693
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 21
|6 P:(DE-Juel1)131678
910 1 _ |a INM-1
|0 I:(DE-HGF)0
|b 21
|6 P:(DE-HGF)0
913 1 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b HUM BRAIN MAPP : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)INM-7-20090406
|k INM-7
|l Gehirn & Verhalten
|x 0
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 1
920 1 _ |0 I:(DE-Juel1)INM-1-20090406
|k INM-1
|l Strukturelle und funktionelle Organisation des Gehirns
|x 2
920 1 _ |0 I:(DE-Juel1)INM-3-20090406
|k INM-3
|l Kognitive Neurowissenschaften
|x 3
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-7-20090406
980 _ _ |a I:(DE-Juel1)INM-11-20170113
980 _ _ |a I:(DE-Juel1)INM-1-20090406
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21