001     837685
005     20240711101516.0
024 7 _ |a 10.1016/j.jpowsour.2017.11.027
|2 doi
024 7 _ |a 0378-7753
|2 ISSN
024 7 _ |a 1873-2755
|2 ISSN
024 7 _ |a WOS:000418391900011
|2 WOS
037 _ _ |a FZJ-2017-06547
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Borgardt, Elena
|0 P:(DE-Juel1)165158
|b 0
|e Corresponding author
245 _ _ |a Mechanical Characterisation and Durability of Sintered Porous Transport Layers for PEM Electrolysis
260 _ _ |a New York, NY [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1515569479_18132
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Differential pressure electrolysis offers the potential for more efficient hydrogen compression. Due to the differential pressures acting within the electrolytic cell, the porous transport layer (PTL) is subjected to high stress. For safety reasons, the PTL's mechanical stability must be ensured. However, the requirements for high porosity and low thickness stand in contrast to that for mechanical stability. Porous transport layers for polymer electrolyte membrane (PEM) electrolysis are typically prepared by means of the thermal sintering of titanium powder. Thus far, the factors that influence the mechanical strength of the sintered bodies and how all requirements can be simultaneously fulfilled have not been investigated. Here, the static and dynamic mechanical properties of thin sintered titanium sheets are investigated ex-situ via tensile tests and periodic loading in a test cell, respectively. In order for a sintered PTL with a thickness of 500 μm and porosities above 25% to be able to withstand 50 bar differential pressure in the cell, the maximum flow field width should be limited to 3 mm. Thus, a method was developed to test the suitability of PTL materials for use in electrolysis for various differential pressures and flow field widths.
536 _ _ |a 134 - Electrolysis and Hydrogen (POF3-134)
|0 G:(DE-HGF)POF3-134
|c POF3-134
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Panchenko, Olha
|0 P:(DE-Juel1)168373
|b 1
700 1 _ |a Hackemüller, Franz Josef
|0 P:(DE-Juel1)168138
|b 2
700 1 _ |a Giffin, Jürgen
|0 P:(DE-Juel1)129938
|b 3
700 1 _ |a Bram, Martin
|0 P:(DE-Juel1)129591
|b 4
700 1 _ |a Müller, Martin
|0 P:(DE-Juel1)129892
|b 5
700 1 _ |a Stolten, Detlef
|0 P:(DE-Juel1)129928
|b 6
700 1 _ |a Lehnert, Werner
|0 P:(DE-Juel1)129883
|b 7
773 _ _ |a 10.1016/j.jpowsour.2017.11.027
|g Vol. 374, p. 84 - 91
|0 PERI:(DE-600)1491915-1
|p 84 - 91
|t Journal of power sources
|v 374
|y 2017
|x 0378-7753
856 4 _ |u https://juser.fz-juelich.de/record/837685/files/1-s2.0-S0378775317314866-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837685/files/1-s2.0-S0378775317314866-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837685/files/1-s2.0-S0378775317314866-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837685/files/1-s2.0-S0378775317314866-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837685/files/1-s2.0-S0378775317314866-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837685/files/1-s2.0-S0378775317314866-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:837685
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)165158
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)168373
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)168138
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)129938
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129591
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129892
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129928
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129883
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-134
|2 G:(DE-HGF)POF3-100
|v Electrolysis and Hydrogen
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J POWER SOURCES : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J POWER SOURCES : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-3-20101013
|k IEK-3
|l Elektrochemische Verfahrenstechnik
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-3-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21