000837689 001__ 837689
000837689 005__ 20210129231425.0
000837689 020__ $$a978-3-319-59383-8
000837689 0247_ $$2doi$$a10.1007/978-3-319-59384-5_12
000837689 037__ $$aFZJ-2017-06550
000837689 041__ $$aEnglish
000837689 1001_ $$0P:(DE-Juel1)169421$$aKleefeld, A.$$b0$$eCorresponding author$$ufzj
000837689 245__ $$aInterior Transmission Eigenvalues for Anisotropic Media
000837689 260__ $$aCham$$bSpringer International Publishing$$c2017
000837689 29510 $$aIntegral Methods in Science and Engineering
000837689 300__ $$a139-147
000837689 3367_ $$2ORCID$$aBOOK_CHAPTER
000837689 3367_ $$07$$2EndNote$$aBook Section
000837689 3367_ $$2DRIVER$$abookPart
000837689 3367_ $$2BibTeX$$aINBOOK
000837689 3367_ $$2DataCite$$aOutput Types/Book chapter
000837689 3367_ $$0PUB:(DE-HGF)7$$2PUB:(DE-HGF)$$aContribution to a book$$bcontb$$mcontb$$s1505460720_21920
000837689 4900_ $$v1
000837689 520__ $$aIn this paper, the numerical calculation of interior transmission eigenvalues for anisotropic media in two dimensions is considered. This is achieved by reformulating the original problem into a system of boundary integral equations. The resulting nonlinear eigenvalue problem is solved with a recent method using complex-valued contour integrals. Numerical results show that one is also able to calculate complex-valued interior transmission eigenvalues, although the existence of those is still open.
000837689 536__ $$0G:(DE-HGF)POF3-511$$a511 - Computational Science and Mathematical Methods (POF3-511)$$cPOF3-511$$fPOF III$$x0
000837689 588__ $$aDataset connected to CrossRef Book
000837689 7001_ $$0P:(DE-HGF)0$$aColton, D.$$b1
000837689 773__ $$a10.1007/978-3-319-59384-5_12
000837689 909CO $$ooai:juser.fz-juelich.de:837689$$pVDB
000837689 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)169421$$aForschungszentrum Jülich$$b0$$kFZJ
000837689 9131_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0
000837689 9141_ $$y2017
000837689 920__ $$lno
000837689 9201_ $$0I:(DE-Juel1)JSC-20090406$$kJSC$$lJülich Supercomputing Center$$x0
000837689 980__ $$acontb
000837689 980__ $$aVDB
000837689 980__ $$aI:(DE-Juel1)JSC-20090406
000837689 980__ $$aUNRESTRICTED