001     837695
005     20240711092226.0
024 7 _ |a 10.1016/j.jnucmat.2014.11.098
|2 doi
024 7 _ |a 0022-3115
|2 ISSN
024 7 _ |a 1873-4820
|2 ISSN
024 7 _ |a WOS:000358467200009
|2 WOS
037 _ _ |a FZJ-2017-06555
082 _ _ |a 530
100 1 _ |a Klimov, N. S.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Plasma Facing Materials Performance under ITER-Relevant Mitigated Disruption Photonic Heat Loads
260 _ _ |a Amsterdam [u.a.]
|c 2015
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1505461635_21918
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a PFMs (Plasma-facing materials: ITER grade stainless steel, beryllium, and ferritic–martensitic steels) as well as deposited erosion products of PFCs (Be-like, tungsten, and carbon based) were tested in QSPA under photonic heat loads relevant to those expected from photon radiation during disruptions mitigated by massive gas injection in ITER. Repeated pulses slightly above the melting threshold on the bulk materials eventually lead to a regular, “corrugated” surface, with hills and valleys spaced by 0.2–2 mm. The results indicate that hill growth (growth rate of ∼1 μm per pulse) and sample thinning in the valleys is a result of melt-layer redistribution. The measurements on the 316L(N)-IG indicate that the amount of tritium absorbed by the sample from the gas phase significantly increases with pulse number as well as the modified layer thickness. Repeated pulses significantly below the melting threshold on the deposited erosion products lead to a decrease of hydrogen isotopes trapped during the deposition of the eroded material.
536 _ _ |a 174 - Plasma-Wall-Interaction (POF3-174)
|0 G:(DE-HGF)POF3-174
|c POF3-174
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Putrik, A. B.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Linke, J.
|0 P:(DE-Juel1)129747
|b 2
700 1 _ |a Pitts, R. A.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Zhitlukhin, A. M.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Kuprianov, I. B.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Spitsyn, A. V.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Ogorodnikova, O. V.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Podkovyrov, V. L.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Muzichenko, A. D.
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Ivanov, B. V.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Sergeecheva, Ya. V.
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Lesina, I. G.
|0 P:(DE-HGF)0
|b 12
700 1 _ |a Kovalenko, D. V.
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Barsuk, V. A.
|0 P:(DE-HGF)0
|b 14
700 1 _ |a Danilina, N. A.
|0 P:(DE-HGF)0
|b 15
700 1 _ |a Bazylev, B. N.
|0 P:(DE-HGF)0
|b 16
700 1 _ |a Giniyatulin, R. N.
|0 P:(DE-HGF)0
|b 17
773 _ _ |a 10.1016/j.jnucmat.2014.11.098
|g Vol. 463, p. 61 - 65
|0 PERI:(DE-600)2001279-2
|p 61 - 65
|t Journal of nuclear materials
|v 463
|y 2015
|x 0022-3115
856 4 _ |u https://juser.fz-juelich.de/record/837695/files/1-s2.0-S0022311514009027-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837695/files/1-s2.0-S0022311514009027-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837695/files/1-s2.0-S0022311514009027-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837695/files/1-s2.0-S0022311514009027-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837695/files/1-s2.0-S0022311514009027-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837695/files/1-s2.0-S0022311514009027-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:837695
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129747
913 1 _ |a DE-HGF
|l Kernfusion
|1 G:(DE-HGF)POF3-170
|0 G:(DE-HGF)POF3-174
|2 G:(DE-HGF)POF3-100
|v Plasma-Wall-Interaction
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J NUCL MATER : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 1 _ |0 I:(DE-Juel1)IEK-2-20101013
|k IEK-2
|l Werkstoffstruktur und -eigenschaften
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-2-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-1-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21