000837696 001__ 837696
000837696 005__ 20240711092227.0
000837696 0247_ $$2doi$$a10.1016/j.jnucmat.2015.04.022
000837696 0247_ $$2ISSN$$a0022-3115
000837696 0247_ $$2ISSN$$a1873-4820
000837696 0247_ $$2WOS$$aWOS:000359170700015
000837696 037__ $$aFZJ-2017-06556
000837696 082__ $$a530
000837696 1001_ $$0P:(DE-HGF)0$$aTripathi, J. K.$$b0$$eCorresponding author
000837696 245__ $$aTemperature Dependent Surface Modification of Molybdenum Due to Low Energy He+ Ion Irradiation
000837696 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2015
000837696 3367_ $$2DRIVER$$aarticle
000837696 3367_ $$2DataCite$$aOutput Types/Journal article
000837696 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1505458406_21919
000837696 3367_ $$2BibTeX$$aARTICLE
000837696 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837696 3367_ $$00$$2EndNote$$aJournal Article
000837696 520__ $$aIn this paper, we report on the temperature dependent surface modifications in molybdenum (Mo) samples due to 100 eV He+ ion irradiation in extreme conditions as a potential candidate to plasma-facing components in fusion devices alternative to tungsten. The Mo samples were irradiated at normal incidence, using an ion fluence of 2.6 × 1024 ions m−2 (with a flux of 7.2 × 1020 ions m−2 s−1). Surface modifications have been studied using high-resolution field emission scanning electron-(SEM) and atomic force (AFM) microscopy. At 773 K target temperature homogeneous evolution of molybdenum nanograins on the entire Mo surface were observed. However, at 823 K target temperature appearance of nano-pores and pin-holes nearby the grain boundaries, and Mo fuzz in patches were observed. The fuzz density increases significantly with target temperatures and continued until 973 K. However, at target temperatures beyond 973 K, counterintuitively, a sequential reduction in the fuzz density has been seen till 1073 K temperatures. At 1173 K and above temperatures, only molybdenum nano structures were observed. Our temperature dependent studies confirm a clear temperature widow, 823–1073 K, for Mo fuzz formation. Ex-situ high resolution X-ray photoelectron spectroscopy studies on Mo fuzzy samples show the evidence of MoO3 3d doublets. This elucidates that almost all the Mo fuzz were oxidized during open air exposure and are thick enough as well. Likewise the microscopy studies, the optical reflectivity measurements also show a sequential reduction in the reflectivity values (i.e., enhancement in the fuzz density) up to 973 K and after then a sequential enhancement in the reflectivity values (i.e., reduction in the fuzz density) with target temperatures. This is in well agreement with microscopy studies where we observed clear temperature window for Mo fuzz growth.
000837696 536__ $$0G:(DE-HGF)POF3-174$$a174 - Plasma-Wall-Interaction (POF3-174)$$cPOF3-174$$fPOF III$$x0
000837696 588__ $$aDataset connected to CrossRef
000837696 7001_ $$0P:(DE-HGF)0$$aNovakowski, T. J.$$b1
000837696 7001_ $$0P:(DE-HGF)0$$aJoseph, G.$$b2$$eCorresponding author
000837696 7001_ $$0P:(DE-Juel1)129747$$aLinke, J.$$b3
000837696 7001_ $$0P:(DE-HGF)0$$aHassanein, A.$$b4
000837696 773__ $$0PERI:(DE-600)2001279-2$$a10.1016/j.jnucmat.2015.04.022$$gVol. 464, p. 97 - 106$$p97 - 106$$tJournal of nuclear materials$$v464$$x0022-3115$$y2015
000837696 8564_ $$uhttps://juser.fz-juelich.de/record/837696/files/1-s2.0-S0022311515002329-main.pdf$$yRestricted
000837696 8564_ $$uhttps://juser.fz-juelich.de/record/837696/files/1-s2.0-S0022311515002329-main.gif?subformat=icon$$xicon$$yRestricted
000837696 8564_ $$uhttps://juser.fz-juelich.de/record/837696/files/1-s2.0-S0022311515002329-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000837696 8564_ $$uhttps://juser.fz-juelich.de/record/837696/files/1-s2.0-S0022311515002329-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000837696 8564_ $$uhttps://juser.fz-juelich.de/record/837696/files/1-s2.0-S0022311515002329-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000837696 8564_ $$uhttps://juser.fz-juelich.de/record/837696/files/1-s2.0-S0022311515002329-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000837696 909CO $$ooai:juser.fz-juelich.de:837696$$pVDB
000837696 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129747$$aForschungszentrum Jülich$$b3$$kFZJ
000837696 9131_ $$0G:(DE-HGF)POF3-174$$1G:(DE-HGF)POF3-170$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lKernfusion$$vPlasma-Wall-Interaction$$x0
000837696 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000837696 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ NUCL MATER : 2015
000837696 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837696 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000837696 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000837696 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837696 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000837696 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837696 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837696 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000837696 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000837696 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000837696 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x0
000837696 980__ $$ajournal
000837696 980__ $$aVDB
000837696 980__ $$aI:(DE-Juel1)IEK-2-20101013
000837696 980__ $$aUNRESTRICTED
000837696 981__ $$aI:(DE-Juel1)IMD-1-20101013