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Chiral damping, chiral gyromagnetism, and current-induced torques in textured one-dimensional
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We investigate Gilbert damping, spectroscopic gyromagnetic ratio, and current-induced torques in the one-
dimensional Rashba model with an additional noncollinear magnetic exchange field. We find that the Gilbert
damping differs between left-handed and right-handed Néel-type magnetic domain walls due to the combination
of spatial inversion asymmetry and spin-orbit interaction (SOI), consistent with recent experimental observations
of chiral damping. Additionally, we find that also the spectroscopic g factor differs between left-handed and
right-handed Néel-type domain walls, which we call chiral gyromagnetism. We also investigate the gyromagnetic
ratio in the Rashba model with collinear magnetization, where we find that scattering corrections to the g factor
vanish for zero SOI, become important for finite spin-orbit coupling, and tend to stabilize the gyromagnetic ratio

close to its nonrelativistic value.
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I. INTRODUCTION

In magnetic bilayer systems with structural inversion
asymmetry the energies of left-handed and right-handed Néel-
type domain walls differ due to the Dzyaloshinskii-Moriya
interaction (DMI) [1-4]. DMI is a chiral interaction, i.e.,
it distinguishes between left-handed and right-handed spin
spirals. Not only the energy is sensitive to the chirality of spin
spirals. Recently, it has been reported that the orbital magnetic
moments differ as well between left-handed and right-handed
cycloidal spin spirals in magnetic bilayers [5,6]. Moreover,
the experimental observation of asymmetry in the velocity of
domain walls driven by magnetic fields suggests that also the
Gilbert damping is sensitive to chirality [7,8].

In this work we show that additionally the spectroscopic
gyromagnetic ratio y is sensitive to the chirality of spin spirals.
The spectroscopic gyromagnetic ratio y can be defined by the
equation

dm
dt
where T is the torque that acts on the magnetic moment m and
dm/dt is the resulting rate of change. y enters the Landau-
Lifshitz-Gilbert equation (LLG):
am Y eff Gpp ., IM
I =yM x H* +a"M x T 2)
where M is a normalized vector that points in the direction
of the magnetization and the tensor & describes the Gilbert
damping. The chirality of the gyromagnetic ratio provides
another mechanism for asymmetries in domain-wall motion
between left-handed and right-handed domain walls.

Not only do the damping and the gyromagnetic ratio exhibit
chiral corrections in inversion asymmetric systems but also
the current-induced torques. Among these torques that act on
domain walls are the adiabatic and nonadiabatic spin-transfer
torques [9—-12] and the spin-orbit torque [13-16]. Based on
phenomenological grounds additional types of torques have
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been suggested [17]. Since this large number of contributions
are difficult to disentangle experimentally, current-driven
domain-wall motion in inversion asymmetric systems is not
yet fully understood.

The two-dimensional Rashba model with an additional
exchange splitting has been used to study spintronics effects
associated with the interfaces in magnetic bilayer systems
[18-22]. Recently, interest in the role of DMI in one-
dimensional magnetic chains has been triggered [23,24]. For
example, the magnetic moments in biatomic Fe chains on
the Ir surface order in a 120° spin-spiral state due to DMI
[25]. Apart from DMI, also other chiral effects, such as
chiral damping and chiral gyromagnetism, are expected to
be important in one-dimensional magnetic chains on heavy
metal substrates. The one-dimensional Rashba model [26,27]
with an additional exchange splitting can be used to simulate
spin-orbit driven effects in one-dimensional magnetic wires
on substrates [28-30]. While the generalized Bloch theorem
[31] usually cannot be used to treat spin spirals when SOI
is included in the calculation, the one-dimensional Rashba
model has the advantage that it can be solved with the help of
the generalized Bloch theorem, or with a gauge-field approach
[32], when the spin spiral is of Néel type. When the generalized
Bloch theorem cannot be employed one needs to resort to
a supercell approach [33], use open boundary conditions
[34,35], or apply perturbation theory [6,9,36—39] in order to
study spintronics effects in noncollinear magnets with SOL.
In the case of the one-dimensional Rashba model the DMI
and the exchange parameters were calculated both directly
based on a gauge-field approach and from perturbation theory
[38]. The results from the two approaches were found to be in
perfect agreement. Thus, the one-dimensional Rashba model
provides also an excellent opportunity to verify expressions
obtained from perturbation theory by comparison to the results
from the generalized Bloch theorem or from the gauge-field
approach.

In this work we study chiral gyromagnetism and chiral
damping in the one-dimensional Rashba model with an
additional noncollinear magnetic exchange field. The one-
dimensional Rashba model is very well suited to study these
SOI-driven chiral spintronics effects, because it can be solved
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in a very transparent way without the need for a supercell
approach, open boundary conditions, or perturbation theory.
We describe scattering effects by the Gaussian scalar disorder
model. To investigate the role of disorder for the gyromagnetic
ratio in general, we study y also in the two-dimensional Rashba
model with collinear magnetization. Additionally, we compute
the current-induced torques in the one-dimensional Rashba
model.

This paper is structured as follows: In Sec. IT A we introduce
the one-dimensional Rashba model. In Sec. II B we discuss
the formalism for the calculation of the Gilbert damping
and of the gyromagnetic ratio. In Sec. IIC we present the
formalism used to calculate the current-induced torques. In
Secs. IIT A, III B, and III C we discuss the gyromagnetic ratio,
the Gilbert damping, and the current-induced torques in the
one-dimensional Rashba model, respectively. This paper ends
with a summary in Sec. IV.

II. FORMALISM
A. One-dimensional Rashba model
The two-dimensional Rashba model is given by the Hamil-

tonian [19]

K% 92 2 92
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T 0x ay 2

where the first line describes the kinetic energy, the first two
terms in the second line describe the Rashba SOI, and the
last term in the second line describes the exchange splitting.
M (r) is the magnetization direction, which may depend on the
position r = (x,y), and o is the vector of Pauli spin matrices.
By removing the terms with the y derivatives from Eq. (3),
ie., B9 Raxai, one obtains a one-dimensional

3 37 and —i«
variant of the Rashba model with the Hamiltonian [38]
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Equation (4) is invariant under the simultaneous rotation of
o and of the magnetization M around the y axis. Therefore,
if M(x) describes a flat cycloidal spin spiral propagating into
the x direction, as given by

sin(gx)
Mx={ 0 |, )
cos(gx)

we can use the unitary transformation
cos (L) —sin (%L
ey = (=(8) —sn(%)
sin (%) cos (%)

in order to transform Eq. (4) into a position-independent
effective Hamiltonian [38]:

(6)
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where p, = —ihd/dx is the x component of the momentum
operator and
. h?
peff — R ' 8
x e \” + 2m )% ®)

is the x component of the effective magnetic vector potential.
Equation (8) shows that the noncollinearity described by g acts
like an effective SOl in the special case of the one-dimensional
Rashba model. This suggests to introduce the concept of
effective SOI strength

oszf =aoR + Eq. )
Based on this concept of the effective SOI strength one
can obtain the g dependence of the one-dimensional Rashba
model from its @R dependence at ¢ = 0. That a noncollinear
magnetic texture provides a nonrelativistic effective SOI has
been found also in the context of the intrinsic contribution
to the nonadiabatic torque in the absence of relativistic SOI,
which can be interpreted as a spin-orbit torque arising from
this effective SOI [40]. While the Hamiltonian in Eq. (4)
depends on position x through the position dependence of the
magnetization M (x) in Eq. (5), the effective Hamiltonian in
Eq. (7) is not dependent on x and therefore easy to diagonalize.

B. Gilbert damping and gyromagnetic ratio

In collinear magnets damping and gyromagnetic ratio can
be extracted from the tensor [16]

1 ImGR - (fiw)
A= —— lim — 27 (10)
V w—0 hw

where V is the volume of the unit cell and
G 1 () = —i f e ([ T0.T0)0.) (1)
0

is the retarded torque-torque correlation function. 7; is the
ith component of the torque operator [16]. The dc-limit
w — 0 in Eq. (10) is only justified when the frequency of
the magnetization dynamics, e.g., the ferromagnetic resonance
frequency, is smaller than the relaxation rate of the electronic
states. In thin magnetic layers and monoatomic chains on
substrates this is typically the case due to the strong interfacial
disorder. However, in very pure crystalline samples at low
temperatures the relaxation rate may be smaller than the ferro-
magnetic resonance frequency and one needs to assume w > 0
in Eq. (10) [41,42]. The tensor A depends on the magnetization
direction M and we decompose it into the tensor S, which
is even under magnetization reversal [S(M )= S(—M )], and
the tensor A, which is odd under magnetization reversal
[A(M) = —A(—M)], such that A = S + A, where

Sij (M) = L[Ai;(M) + Aij(—M)] (12)
and
Aij(M) = 3[Ai;(M) — Aij(—MD). (13)

One can show that S is symmetric, i.e., Sij(M) = Sj,-(M),
while A is antisymmetric, i.e., A;;(M) = —A ;;(M).
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The Gilbert damping may be extracted from the symmetric
component S as follows [16]:
l¥1S;;
af = P (14)
7 Muo
where M is the magnetization. The gyromagnetic ratio y is
obtained from A according to the equation [16]

1

_ ZeljkAlek
Y ZMOM T

ZeljkAlek (15)

,bL ijk

It is convenient to discuss the gyromagnetic ratio in terms
of the dimensionless g factor, which is related to y through
y = guous/h. Consequently, the g factor is given by

1

g 2hM ZEZIkAI]Mk 2hM ZEIJkAlek (16)
ijk ijk

Due to the presence of the Levi-Civita tensor ¢;j; in Eq. (15)
and in Eq. (16) the gyromagnetic ratio and the g factor are
determined solely by the antisymmetric component A of A.

Various different conventions are used in the literature
concerning the sign of the g factor [43]. Here we define the sign
of the g factor such thaty > Oforg > O0and y < Oforg < 0.
According to Eq. (1) the rate of change of the magnetic moment
is therefore parallel to the torque for positive g and antiparallel
to the torque for negative g. While we are interested in this
work in the spectroscopic g factor, and hence in the relation
between the rate of change of the magnetic moment and the
torque, Ref. [43] discusses the relation between the magnetic
moment m and the angular momentum L that generates it,
i.e., m = Yyuic L. Since differentiation with respect to time
and use of T = dL/dt leads to Eq. (1) our definition of the
signs of g and y agrees essentially with the one suggested in
Ref. [43], which proposes to use a positive g when the magnetic
moment is parallel to the angular momentum generating it and
a negative g when the magnetic moment is antiparallel to the
angular momentum generating it.

Combining Eqgs. (14) and (15) we can express the Gilbert
damping in terms of A and S as follows:

Sxx
af = 2 (17)
[Axyl

In the independent particle approximation Eq. (10) can be

written as A;; = Al(a) + AI(b) + A}}, where

A 1 [ d%
A = / Sy TTGRET GRER),
Al L[k g Tr(7; Gy (Er)T; GR (&),

i T T e T r ¥

dk [ dGR(&)

11 R k

I = — == | aeReTH|T; 7;

ij h (Zﬂ)d /;oo ERe r< Gk(g) J d&

dGR(&)
- T— T/GE(6>>. (18)

Here d is the dimension (d = 1 ord =2 ord = 3), GE(E) is
the retarded Green’s function, and G,’?(E ) = [G,‘E(E ). Epis the
Fermi energy. Ag.b) is symmetric under the interchange of the
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indices i and j while A} is antisymmetric. The term AI(")

contains both symmetrlc and antisymmetric components
Since the Gilbert damping tensor is symmetric, both Al(b)

and Aiﬁ.) contribute to it. Since the gyromagnetic tensor is

antisymmetric, both A} and Alléa) contribute to it.

In order to account for disorder we use the Gaussian scalar
disorder model, where the scattering potential V(r) satisfies
(V(r))=0 and (V@)V(')) = US@r —r’). This model is
frequently used to calculate transport properties in disordered
multiband model systems [44], but it has also been combined
with ab initio electronic structure calculations to study the
anomalous Hall effect [45,46] and the anomalous Nernst effect
[47] in transition metals and their alloys.

Inthe clean limit, i.e., in the limit U — 0, the antisymmetric
contribution to Eq. (18) can be written as A;; = A" 4 A5,
where the intrinsic part is given by

i 4% i J
Al.“,t — . - Im knm ~kmn
z @yt LM = funllime B2
(Ukn| Olttn)
ez
/(2 >d;%: “Lam o,
X Zéilmejl’m’MmMm“ (19)

The second line in Eq. (19) expresses Ai.'?t in terms of the
Berry curvature in magnetization space [48]. The scattering
contribution is given by

scatt d'k
Aij —Flz (2 )ds(gF_gkn)

i Yk i Yk
i mn 7 J J mn i
m{ - |:Mknm Z{nn Mknm chn
knn knn
T
+ [Mkmn knm Mkmn knm]

knn knm

i Yk iV
i mn A-Jj J kmn A-i
M knm T - j;mn

knn knn

|: Fi Yinm IZ;c]mn _ ,Z”'—j Yinm 7;{imn :|

k
- gkm nn Yinn 5kn - 5‘km

1]~ 1 g = 1
+-\7 —T T T
2 |: o 8kn - Skm emn fenm 8kn - 8km kmn:|
i Yiknm 1 7
+ Tjilﬂ lmn
|: k Yinn Skn Ekm k
i yknm 1 J :|}
— Tiun — T | 1 (20)
. Yiknn 5k” - gkm ,
Here ’Z;(’nm = (ugn|7Z; |urm) are the matrix elements of the

torque operator. ’Z:’nm denotes the vertex corrections of the
torque, which solve the equation

Z/ A"k’ 8(Er — Exp)
knm (271’)”_1 zyk,pp
+ T Nt pluien). (21)

X Gl ) [T,
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The matrix y,, . is given by

dk/
Yinm = —7 Z/(Z S(SF gk/p)(ukn|uk’p><uk/p|ukm>

(22)
and the Berry connection in magnetization space is defined as

M . Tk‘]n}’ﬂ 23
l knm =1 gm_gkn. (23)
The scattering contribution Eq. (20) formally resembles the
side-jump contribution to the AHE [44] as obtained from
the scalar disorder model: It can be obtained by replacing the
velocity operators in Ref. [44] by torque operators. We find that
in collinear magnets without SOI this scattering contribution
vanishes. The gyromagnetic ratio is then given purely by the
intrinsic contribution Eq. (19). This is an interesting difference
to the AHE: Without SOI all contributions to the AHE are zero
in collinear magnets, while both the intrinsic and the side-jump
contributions are generally nonzero in the presence of SOL
In the absence of SOI Eq. (19) can be expressed in terms of
the magnetization [48]:

. i
Al = 5 Ze,-jkMk. (24)
k

Inserting Eq. (24) into Eq. (16) yields g = —2, i.e., the
expected nonrelativistic value of the g factor.

The g factor in the presence of SOI is usually assumed to
be given by [49]

Mspin + Morb ) M ’ (25)

M, spin spin

g=-2

where My, is the orbital magnetization, Mgy, is the spin
magnetization, and M = Moy, + Mpi, is the total magneti-
zation. The g factor obtained from Eq. (25) is usually in good
agreement with experimental results [50]. When SOl is absent,
the orbital magnetization is zero, My, = 0, and consequently
Eq. (25) yields g = —2 in that case. Equation (16) can be
rewritten as

1 spm 1
- = ik Aii My = —, 26
g M 2thp1n ; J J g ( )

with

= cinAiM 27
gl ZEMSPmiZ jkij V. ( )

From the comparison of Eq. (26) with Eq. (25) it follows
that Eq. (25) holds exactly if g, = —2 is satisfied. How-
ever, Eq. (27) usually yields g, = —2 only in collinear
magnets when SOI is absent, otherwise g, # —2. In the
one-dimensional Rashba model the orbital magnetization is
zero, My, = 0, and consequently

1 g N
- = €ijkAij M. (28)
8 2'h]uspin ljzk ! !
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The symmetric contribution can be written as S;;
SRRfverl + S'R'Afvert

= S;;“ +
, where

m_ % %n{zcg(&m[@é(&) - GRe&n])
(29)
and
il}Rfvenz_l ddkd Tr{T*RGR(ENT; Gi(Ep)}  (30)
h 2m)
and
o _ L / (;’d)d H{TRGRENT, GREn). B

where GR(Ep) = A& — ER(EF)] I is the retarded

Green’s function, GQ(EF) = [G,‘?(SF)]
Green’s function, and

is the advanced

U [ d'%k
(2!

is the retarded self-energy. The vertex corrections are deter-
mined by the equations

=R (&) = Gy (&) (32)

~ AR dlk

T =T+ o )dGA(Ep)T KGR(&p) (33)

and

d
R v / 'k G,’j(eF)T GE(EF). (34)

@2m)?

In contrast to the antisymmetric tensor A, which becomes
independent of the scattering strength U for sufficiently small
U, i.e., in the clean limit, the symmetric tensor S depends
strongly on U in metallic systems in the clean limit. S};“
and Sfj?‘m depend therefore on U through the self-energy and
through the vertex corrections.

In the case of the one-dimensional Rashba model, Egs. (19)
and (20) for the antisymmetric tensor A and Egs. (29), (30),
and (31) for the symmetric tensor S can be used both for the
collinear magnetic state as well as for the spin spiral of Eq. (5).
To obtain the g factor for the collinear magnetic state, we
plug the eigenstates and eigenvalues of Eq. (4) (with M = &)
into Eq. (19) and into Eq. (20). In the case of the spin spiral
of Eq. (5) we use instead the eigenstates and eigenvalues of
Eq. (7). Similarly, to obtain the Gilbert damping in the collinear
magnetic state, we evaluate Egs. (29), (30), and (31) based on
the Hamiltonian in Eq. (4) and for the spin spiral we use instead
the effective Hamiltonian in Eq. (7).

C. Current-induced torques

The current-induced torque on the magnetization can be
expressed in terms of the torkance tensor #;; as [15]

T; = ZtijEj7 (35)
J

where E is the jth component of the applied electric field and
T; is the ith component of the torque per volume [51]. #; is
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the sum of three terms, #;; = tl(‘l) + tl(b) +1j, where [15]
qo _ o[ 4k g TG (Erv; Gy (Er)
WS 5 ) e TECKE GLED),
e d’k
(1o = - a7 RETHTIGEEDL; GE(ER).
1 e [ dik [F R, o AGR(E)
tij = — (2 )d /Ood(‘:ReTl‘ IGk(g)va
dGR(E)
- =068 (5)> (36)

We decompose the torkance into two parts that are, respec-
tively, even and odd with respect to magnetization reversal,
ie., t;;(M) = [t;,(M) + 1,,(—=M)]/2 and 5,(M) = [1,,(M) —
£ (=DD)/2.

In the clean limit, i.e., for U — 0, the even torkance can be
written as 7, = tiej"m + tiejfsca“, where [15]

J

knm Vkmn (37)

e,int
fij (2 @y - Zf"” M o — Em)?

is the intrinsic contribution and

escatl Z/ (2 )d 5(5F gkn)

nm

X Im{ |: Mknm ykmn knn + Aljcnm Vi 7;cZnn:|
yknn J/knn

+

i
kmn knm kmn knm]

|:M Yinn ~I]mn - ‘Aknm Ve g;clnni|

Yinn Yinn

Ti ~J
+ Yinm nn _Fi Yinm Vienn
k kmn
" Yinn 8kn - 8 km Yinn gkn - gkm

. ~ 1
Tz T J
2 |: Vknm gk _ 5km knm 5 _ 5km vkmni|

; 1
+ |:Uj Yinm Tl

knn yk,m Skn _ g o kmn
i YVinm 1 ~J :| }

- Tnn Vkmn (38)
k knn gkn - gkm k

is the scattering contribution. Here

Ay =i L1 D) G
i =i u ~|u

knm — 5 — gkn h kn ki km

is the Berry connection in k space and the vertex corrections
of the velocity operator solve the equation

= Y / A"k’ 8(Er — Ex)
o Qry=t 2y,

X (ttknl g p) [,y + VL0t p L) (40)
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The odd contribution can be written as ti"j = tf’].’im =+ t}}Rfvm +

AR—vert

I , where

o,int ddk R A R

5" =5 | Gy THTGKER (G - G}

41
and
—ver ¢ d’k T

ti]}R t:—z (zn)dTr{ZRRGE(gF)UjGi(gF)} (42)

and

d
Rt = % (;171/; _Tr{TARGR(Erv; G (). (43)
The vertex corrections 7;AR and ZRR of the torque operator
are given in Eq. (33) and in Eq. (34), respectively.

While the even torkance, Eqs. (37) and (38), becomes
independent of the scattering strength U in the clean limit,
i.e., for U — 0, the odd torkance #;; depends strongly on U in
metallic systems in the clean limit [15].

In the case of the one-dimensional Rashba model, Eqs. (37)
and (38) for the even torkance te and Egs. (41), (42), and (43)
for the odd torkance ’f} can be used both for the collinear
magnetic state as well as for the spin spiral of Eq. (5). To
obtain the even torkance for the collinear magnetic state, we
plug the eigenstates and eigenvalues of Eq. (4) (with M = &)
into Eq. (37) and into Eq. (38). In the case of the spin spiral
of Eq. (5) we use instead the eigenstates and eigenvalues of
Eq. (7). Similarly, to obtain the odd torkance in the collinear
magnetic state, we evaluate Eqgs. (41), (42), and (43) based
on the Hamiltonian in Eq. (4) and for the spin spiral we use
instead the effective Hamiltonian in Eq. (7).

III. RESULTS

A. Gyromagnetic ratio

We first discuss the g factor in the collinear case, i.e., when
M(r) = e,. In this case the energy bands are given by

hzkz
E=

\/ (AV)? + (aRky)2. (44)

When AV # 0 or a® # 0 the energy £ can become negative.
The band structure of the one-dimensional Rashba model is
shown in Fig. 1 for the model parameters a® = 2 eV A and
AV = 0.5eV. For this choice of parameters the energy minima
are not located at k, = O but instead at

\/(aR)“mZ Lid(A vy
R2aR

and the corresponding minimum of the energy is given by

ki = , (45)

R4 1A 2
gminz_m(a ) —;4m(AV) . (46)
25~ (aR)?
The inverse g factor is shown as a function of the SOI strength
R in Fig. 2 for the exchange splitting AV = 1 eV and Fermi
energy & = 1.36 eV. At aR = 0 the scattering contribution
is zero, i.e., the g factor is determined completely by the
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FIG. 1. Band structure of the one-dimensional Rashba model.

intrinsic Berry curvature expression, Eq. (24). Thus, at a® = 0
it assumes the value 1/g = —0.5, which is the expected
nonrelativistic value [see the discussion below Eq. (24)].
With increasing SOI strength a® the intrinsic contribution to
1/g is more and more suppressed. However, the scattering
contribution compensates this decrease such that the total 1/g
is close to its nonrelativistic value of —0.5. The neglect of the
scattering corrections at large values of a® would lead in this
case to a strong underestimation of the magnitude of 1/g, i.e.,
a strong overestimation of the magnitude of g.

However, at smaller values of the Fermi energy, the g factor
can deviate substantially from its nonrelativistic value of —2.
To show this we plot in Fig. 3 the inverse g factor as a function
of the Fermi energy when the exchange splitting and the SOI
strength are setto AV = 1 eV and aR = 2 eV A, respectively.
As discussed in Eq. (44) the minimal Fermi energy is negative
in this case. The intrinsic contribution to 1/g declines with
increasing Fermi energy. At large values of the Fermi energy
this decline is compensated by the increase of the vertex
corrections and the total value of 1/g is close to —0.5.

Previous theoretical works on the g factor have not
considered the scattering contribution [52]. It is therefore
important to find out whether the compensation of the decrease
of the intrinsic contribution by the increase of the extrinsic
contribution as discussed in Figs. 2 and 3 is peculiar to the
one-dimensional Rashba model or whether it can be found
in more general cases. For this reason we evaluate g; for
the two-dimensional Rashba model. In Fig. 4 we show the

O-.,_‘ T T T =
-~ scattering
_ L --intrinsic ~ __--- 3
0.1 . — total =7
0.2 :
= e
-0.3F o 4
it
04
7’
’/
- e ]
-0.5

005 T 152
SOI strength o [eVA]

R

FIG. 2. Inverse g factor vs SOI strength o in the one-

dimensional Rashba model.
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FIG. 3. Inverse g factor vs Fermi energy in the one-dimensional
Rashba model.

inverse g; factor in the two-dimensional Rashba model as
a function of SOI strength aR for the exchange splitting
AV =1 eV and the Fermi energy & = 1.36 eV. Indeed for
aR < 0.5 eV A the scattering corrections tend to stabilize
g1 at its nonrelativistic value. However, in contrast to the
one-dimensional case (Fig. 2), where g does not deviate
much from its nonrelativistic value up to aR=2eV A, g1
starts to be affected by SOI at smaller values of aR in the
two-dimensional case. According to Eq. (26) the full g factor
is given by g = g,(1 + Mow/Mpin). Therefore, when the
scattering corrections stabilize g; at its nonrelativistic value
Eq. (25) is satisfied. In the two-dimensional Rashba model
M, = 0 when both bands are occupied. For the Fermi energy
& = 1.36 eV both bands are occupied and therefore g = g;
for the range of parameters used in Fig. 4.

The inverse g; of the two-dimensional Rashba model is
shown in Fig. 5 as a function of Fermi energy for the parameters
AV = 1eV and R =2 eV A. The scattering correction is as
large as the intrinsic contribution when & > 1 eV. While the
scattering correction is therefore important, it is not sufficiently
large to bring g; close to its nonrelativistic value in the energy
range shown in the figure, which is a major difference to
the one-dimensional case illustrated in Fig. 3. According to
Eq. (26) the g factor is related to g; by g = g1M/Mgyn.
Therefore, we show in Fig. 6 the ratio M /Mg, as a function
of Fermi energy. At high Fermi energy (when both bands are

1
S o 5
W N =
T T T
N
Ve
\
\
\\
1

.-+ scattering
- - intrinsic
— total

o
=

0 05 1 15 2
SOI strength o [eVA]

R

FIG. 4. Inverse g; factor vs SOI strength «" in the two-

dimensional Rashba model.
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FIG. 5. Inverse g, factor 1/g; vs Fermi energy in the two-
dimensional Rashba model.

occupied) the orbital magnetization is zero and M /Mgy = 1.
At low Fermi energy the sign of the orbital magnetization
is opposite to the sign of the spin magnetization such that
the magnitude of M is smaller than the magnitude of Mpi,
resulting in the ratio M/ Mg,in < 1.

Next, we discuss the g factor of the one-dimensional Rashba
model in the noncollinear case. In Fig. 7 we plot the inverse
g factor and its decomposition into the intrinsic and scattering
contributions as a function of the spin-spiral wave vector ¢,
where exchange splitting, SOI strength, and Fermi energy
are set to AV =1¢eV, aR =2 eV A, and & = 1.36 eV,
respectively. Since the curves are not symmetric around g = 0,
the g factor at wave number ¢ differs from the one at —gq,
i.e., the gyromagnetism in the Rashba model is chiral. At
g = —2m,aR /R* the g factor assumes the value of g = —2
and the scattering corrections are zero. Moreover, the curves
are symmetric around ¢ = —2m,aR/h>. These observations
can be explained by the concept of the effective SOl introduced
in Eq. (9): At ¢ = —2m.aR/h* the effective SOI is zero
and consequently the noncollinear magnet behaves like a
collinear magnet without SOI at this value of g. As we have
discussed above in Fig. 2, the g factor of collinear magnets is
g = —2 when SOI is absent, which explains why it is also
g = —2 in noncollinear magnets with ¢ = —2m,aR/h>. If
only the intrinsic contribution is considered and the scattering
corrections are neglected, 1/g varies much stronger around the
point of zero effective SOl g = —2m,a® /1%, 1.e., the scattering

1.5¢ 1

spin

M/M

0.5r 1

. e M

Fermi energy [eV]

FIG. 6. Ratio of total magnetization and spin magnetization
M /Mgy, vs Fermi energy in the two-dimensional Rashba model.
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FIG. 7. Inverse g factor 1/g vs wave number ¢ in the one-
dimensional Rashba model.

corrections stabilize g at its nonrelativistic value close to the
point of zero effective SOI.

B. Damping

We first discuss the Gilbert damping in the collinear case,
i.e., we set M(r) = é. in Eq. (4). The xx component of the
Gilbert damping is shown in Fig. 8 as a function of scattering
strength U for the following model parameters: exchange
splitting AV =1 eV, Fermi energy & = 2.72 eV, and SOI
strength R = 0. All three contributions are individually
nonzero, but the contribution from the RR-vertex correction
[Eqg. (30)] is much smaller than the one from the AR-vertex
correction [Eq. (31)] and much smaller than the intrinsic
contribution [Eq. (29)]. However, in this case the total damping
is zero, because a nonzero damping in periodic crystals
with collinear magnetization is only possible when SOI is
present [53].

In Fig. 9 we show the xx component of the Gilbert damping
oS as a function of scattering strength U for the model
parameters AV =1 eV, & =2.72 eV, and aR =2 eV A.
The dominant contribution is the AR-vertex correction. The
damping as obtained based on Eq. (10) diverges like 1/U in
the limit U — 0, i.e., proportional to the relaxation time t
[53]. However, once the relaxation time 7 is larger than the
inverse frequency of the magnetization dynamics the dc-limit
w — 0 in Eq. (10) is not appropriate and w > 0 needs to

O 8 it T
S 0.4 Jitae RR-Vertex 1
op -+ AR-Vertex
o 0.2 s == Intrinsic b
g 7 — total
s OF
a L
2 -02F 8
3
= -0.4r Sl .
© .

Scattering strength U [(eV)'A]

FIG. 8. Gilbert damping «C vs scattering strength U in the
one-dimensional Rashba model without SOI. In this case the vertex
corrections and the intrinsic contribution sum up to zero.
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FIG. 9. Gilbert damping oS vs scattering strength U in the one-
dimensional Rashba model with SOL.

be used. It has been shown that the Gilbert damping is not
infinite in the ballistic limit T — oo when w > 0 [41,42]. In
the one-dimensional Rashba model the effective magnetic field
exerted by SOI on the electron spins points in the y direction.
Since a magnetic field along y direction cannot lead to a torque
in y direction the yy component of the Gilbert damping ozyGy is
zero (not shown in the figure).

Next, we discuss the Gilbert damping in the noncollinear
case. In Fig. 10 we plot the xx component of the Gilbert
damping as a function of spin spiral wave number g for the
model parameters AV =1 eV, & = 1.36 eV, aR =2eV A,
and the scattering strength U = 0.98 (eV)? A. The curves
are symmetric around ¢ = —2m,a® /A?, because the damping
is determined by the effective SOI defined in Eq. (9). At
g = —2m.aR /i? the effective SOI is zero and therefore the
total damping is zero as well. The damping at wave number g
differs from the one at wave number —q, i.e., the damping is
chiral in the Rashba model. Around the point g = —2m,aR />
the damping is described by a quadratic parabola at first. In the
regions —2 A< g <—-12A"and 0.2 A < g <1A-!
this trend is interrupted by a W-shape behavior. In the quadratic
parabola region the lowest energy band crosses the Fermi
energy twice. As shown in Fig. 1 the lowest band has a local
maximum atg = 0. In the W-shape region this local maximum
shifts upwards, approaches the Fermi level, and finally passes
it such that the lowest energy band crosses the Fermi level four
times. This transition in the band structure leads to oscillations

o 520 RR-Vertex
3 =+ AR-Vertex
i — - Intrinsic A
%‘0 15F — total !
E 10!
'U .
5 5
=
O oF NS i

215 -1 05 0 0'15 I
Wave vector g [A™]

FIG. 10. Gilbert damping S vs spin spiral wave number ¢ in

XX
the one-dimensional Rashba model.
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FIG. 11. Gilbert damping afy vs spin spiral wave number ¢ in
the one-dimensional Rashba model.

in the density of states, which results in the W-shape behavior
of the Gilbert damping.

Since the damping is determined by the effective SOI, we
can use Fig. 10 to draw conclusions about the damping in the
noncollinear case with @R = 0: We only need to shift all curves
in Fig. 10 to the right such that they are symmetric around
g = 0 and shift the Fermi energy. Thus, for a® = 0 the Gilbert
damping does not vanish if g # 0. Since for «® = 0 angular
momentum transfer from the electronic system to the lattice
is not possible, the damping is purely nonlocal in this case,
i.e., angular momentum is interchanged between electrons at
different positions. This means that for a volume in which the
magnetization of the spin spiral in Eq. (5) performs exactly one
revolution between one end of the volume and the other end the
total angular momentum change associated with the damping
is zero, because the angular momentum is simply redistributed
within this volume and there is no net change of the angular
momentum. A substantial contribution of nonlocal damping
has also been predicted for domain walls in permalloy [35].

In Fig. 11 we plot the yy component of the Gilbert damping
as a function of spin spiral wave number ¢ for the model
parameters AV =1 eV, & = 1.36 eV, aR=2eV 1&, and
the scattering strength U = 0.98 (eV)? A. The total damping
is zero in this case. This can be understood from the sym-
metry properties of the one-dimensional Rashba Hamiltonian,
Eq. (4): Since this Hamiltonian is invariant when both ¢ and M

are rotated around the y axis, the damping coefficient a?v does

0.2

_ i _scat_ter_ing

Z o1l e

<A :

) S e

9 0 PP

s L

5 0.1 1
R I N N WA

Fermi energy [eV]

FIG. 12. Torkance t,, vs Fermi energy & in the one-dimensional
Rashba model.
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FIG. 13. Nonadiabatic torkance t,, vs SOI parameter a® in the
two-dimensional Rashba model.

not depend on the position within the cycloidal spin spiral of
Eq. (5). Therefore, nonlocal damping is not possible in this case
and o§) has to be zero when o® = 0. It remains to be shown that

afy = 0 also for aR # 0. However, this follows directly from
the observation that the damping is determined by the effective
SOI, Eq. (9), meaning that any case with ¢ # 0 and aR # 0
can always be mapped onto a case with ¢ # 0 and a® = 0. As
an alternative argumentation we can also invoke the finding
discussed above that afy = 0 in the collinear case. Since the
damping is determined by the effective SOI, it follows that

afy = 0 also in the noncollinear case.

C. Current-induced torques

We first discuss the yx component of the torkance. In Fig. 12
we show the torkance ¢, as a function of the Fermi energy &g

for the model parameters AV = 1eV and a® =2 eV A when
the magnetization is collinear and points in the z direction.
We specify the torkance in units of the positive elementary
charge e, which is a convenient choice for the one-dimensional
Rashba model. When the torkance is multiplied with the
electric field, we obtain the torque per length (see Eq. (35) and
Ref. [51]). Since the effective magnetic field from SOI points
in y direction, it cannot give rise to a torque in y direction and
consequently the total #,, is zero. Interestingly, the intrinsic
and scattering contributions are individually nonzero. The
intrinsic contribution is nonzero, because the electric field
accelerates the electrons such that ﬁl%x = —eE,. Therefore,
the effective magnetic field BS?' = ok, /up changes as well,
ie., BySOI = aRk,/up = —aREe/(fiug). Consequently, the
electron spin is no longer aligned with the total effective
magnetic field (the effective magnetic field resulting from both
SOI and from the exchange splitting AV), when an electric
field is applied. While the total effective magnetic field lies
in the yz plane, the electron spin acquires an x component,
because it precesses around the total effective magnetic field,
with which it is not aligned due to the applied electric field
[54]. The x component of the spin density results in a torque in
y direction, which is the reason why the intrinsic contribution
to ty, is nonzero. The scattering contribution to #,, cancels the
intrinsic contribution such that the total ¢, is zero and angular
momentum conservation is satisfied.

PHYSICAL REVIEW B 96, 104418 (2017)
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FIG. 14. Torkance ., vs scattering strength U in the one-
dimensional Rashba model.

Using the concept of effective SOI, Eq. (9), we conclude
that 7, is also zero for the noncollinear spin spiral described
by Eq. (5). Thus, both the y component of the spin-orbit torque
and the nonadiabatic torque are zero for the one-dimensional
Rashba model.

To show that ¢,, = 01is a peculiarity of the one-dimensional
Rashba model, we plot in Fig. 13 the torkance ¢, in the
two-dimensional Rashba model. The intrinsic and scattering
contributions depend linearly on a® for small values of R,
but the slopes are opposite such that the total ¢, is zero for
sufficiently small aR. However, for larger values of aR the
intrinsic and scattering contributions do not cancel each other
and therefore the total 7,, becomes nonzero, in contrast to the
one-dimensional Rashba model, where ¢,, = 0 even for large
aR. Several previous works determined the part of #,, that
is proportional to a® in the two-dimensional Rashba model
and found it to be zero [21,22] for scalar disorder, which is
consistent with our finding that the linear slopes of the intrinsic
and scattering contributions to t,, are opposite for small a®.

Next, we discuss the xx component of the torkance in the
collinear case (M = ¢;). In Fig. 14 we plot the torkance 7, vs
scattering strength U in the one-dimensional Rashba model for
the parameters AV = 1eV, & = 2.72 eV, and aR =2¢eVA.
The dominant contribution is the AR-type vertex correction
[see Eq. (43)]. ¢, diverges like 1/U in the limit U — 0 as
expected for the odd torque in metallic systems [15].

4 . -+ RR-Vertex i
o . = AR-Vertex
—_ 2 ) - = Intrinsic

=
NR N
[} S~ -
o T T,
g Op o Ny
g
5 -2t
F
_4-| I I
-2 -1 1

Wave vector ¢ [A_l]

FIG. 15. Torkance t,, vs wave vector ¢ in the one-dimensional
Rashba model with SOIL.
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FIG. 16. Torkance ¢,, vs wave vector ¢ in the one-dimensional
Rashba model without SOI.

In Figs. 15 and 16 we plot #,, as a function of spin-spiral
wave number g for the model parameters AV =1 eV, & =
2.72eV,and U = 0.18 (eV)? A.In Fig. 15 the case withaR =2
eV A is shown, while Fig. 16 illustrates the case with a® = 0.
In the case a® = 0 the torkance t,, describes the spin-transfer
torque (STT). In the case a® = 0 the torkance t,, is the sum
of contributions from STT and spin-orbit torque (SOT). The
curves with of =0 and oR # 0 are essentially related by a
shift of Aq = —2m,aR /h?, which can be understood based on
the concept of the effective SOI, Eq. (9). Thus, in the special

PHYSICAL REVIEW B 96, 104418 (2017)

case of the one-dimensional Rashba model STT and SOT are
strongly related.

IV. SUMMARY

We study chiral damping, chiral gyromagnetism, and
current-induced torques in the one-dimensional Rashba model
with an additional Néel-type noncollinear magnetic exchange
field. In order to describe scattering effects we use a Gaussian
scalar disorder model. Scattering contributions are generally
important in the one-dimensional Rashba model with the
exception of the gyromagnetic ratio in the collinear case
with zero SOI, where the scattering corrections vanish in
the clean limit. In the one-dimensional Rashba model SOI
and noncollinearity can be combined into an effective SOI.
Using the concept of effective SOI, results for the magnetically
collinear one-dimensional Rashba model can be used to predict
the behavior in the noncollinear case. In the noncollinear
Rashba model the Gilbert damping is nonlocal and does not
vanish for zero SOI. The scattering corrections tend to stabilize
the gyromagnetic ratio in the one-dimensional Rashba model
at its nonrelativistic value. Both the Gilbert damping and the
gyromagnetic ratio are chiral for nonzero SOI strength. The
antidampinglike spin-orbit torque and the nonadiabatic torque
for Néel-type spin spirals are zero in the one-dimensional
Rashba model, while the antidampinglike spin-orbit torque is
nonzero in the two-dimensional Rashba model for sufficiently
large SOI-strength.
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