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We investigate Gilbert damping, spectroscopic gyromagnetic ratio, and current-induced torques in the one-
dimensional Rashba model with an additional noncollinear magnetic exchange field. We find that the Gilbert
damping differs between left-handed and right-handed Néel-type magnetic domain walls due to the combination
of spatial inversion asymmetry and spin-orbit interaction (SOI), consistent with recent experimental observations
of chiral damping. Additionally, we find that also the spectroscopic g factor differs between left-handed and
right-handed Néel-type domain walls, which we call chiral gyromagnetism. We also investigate the gyromagnetic
ratio in the Rashba model with collinear magnetization, where we find that scattering corrections to the g factor
vanish for zero SOI, become important for finite spin-orbit coupling, and tend to stabilize the gyromagnetic ratio
close to its nonrelativistic value.

DOI: 10.1103/PhysRevB.96.104418

I. INTRODUCTION

In magnetic bilayer systems with structural inversion
asymmetry the energies of left-handed and right-handed Néel-
type domain walls differ due to the Dzyaloshinskii-Moriya
interaction (DMI) [1–4]. DMI is a chiral interaction, i.e.,
it distinguishes between left-handed and right-handed spin
spirals. Not only the energy is sensitive to the chirality of spin
spirals. Recently, it has been reported that the orbital magnetic
moments differ as well between left-handed and right-handed
cycloidal spin spirals in magnetic bilayers [5,6]. Moreover,
the experimental observation of asymmetry in the velocity of
domain walls driven by magnetic fields suggests that also the
Gilbert damping is sensitive to chirality [7,8].

In this work we show that additionally the spectroscopic
gyromagnetic ratio γ is sensitive to the chirality of spin spirals.
The spectroscopic gyromagnetic ratio γ can be defined by the
equation

dm

dt
= γ T , (1)

where T is the torque that acts on the magnetic moment m and
dm/dt is the resulting rate of change. γ enters the Landau-
Lifshitz-Gilbert equation (LLG):

d M̂

dt
= γ M̂ × H

eff + α
G

M̂ ×
d M̂

dt
, (2)

where M̂ is a normalized vector that points in the direction
of the magnetization and the tensor α

G describes the Gilbert
damping. The chirality of the gyromagnetic ratio provides
another mechanism for asymmetries in domain-wall motion
between left-handed and right-handed domain walls.

Not only do the damping and the gyromagnetic ratio exhibit
chiral corrections in inversion asymmetric systems but also
the current-induced torques. Among these torques that act on
domain walls are the adiabatic and nonadiabatic spin-transfer
torques [9–12] and the spin-orbit torque [13–16]. Based on
phenomenological grounds additional types of torques have
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been suggested [17]. Since this large number of contributions
are difficult to disentangle experimentally, current-driven
domain-wall motion in inversion asymmetric systems is not
yet fully understood.

The two-dimensional Rashba model with an additional
exchange splitting has been used to study spintronics effects
associated with the interfaces in magnetic bilayer systems
[18–22]. Recently, interest in the role of DMI in one-
dimensional magnetic chains has been triggered [23,24]. For
example, the magnetic moments in biatomic Fe chains on
the Ir surface order in a 120◦ spin-spiral state due to DMI
[25]. Apart from DMI, also other chiral effects, such as
chiral damping and chiral gyromagnetism, are expected to
be important in one-dimensional magnetic chains on heavy
metal substrates. The one-dimensional Rashba model [26,27]
with an additional exchange splitting can be used to simulate
spin-orbit driven effects in one-dimensional magnetic wires
on substrates [28–30]. While the generalized Bloch theorem
[31] usually cannot be used to treat spin spirals when SOI
is included in the calculation, the one-dimensional Rashba
model has the advantage that it can be solved with the help of
the generalized Bloch theorem, or with a gauge-field approach
[32], when the spin spiral is of Néel type. When the generalized
Bloch theorem cannot be employed one needs to resort to
a supercell approach [33], use open boundary conditions
[34,35], or apply perturbation theory [6,9,36–39] in order to
study spintronics effects in noncollinear magnets with SOI.
In the case of the one-dimensional Rashba model the DMI
and the exchange parameters were calculated both directly
based on a gauge-field approach and from perturbation theory
[38]. The results from the two approaches were found to be in
perfect agreement. Thus, the one-dimensional Rashba model
provides also an excellent opportunity to verify expressions
obtained from perturbation theory by comparison to the results
from the generalized Bloch theorem or from the gauge-field
approach.

In this work we study chiral gyromagnetism and chiral
damping in the one-dimensional Rashba model with an
additional noncollinear magnetic exchange field. The one-
dimensional Rashba model is very well suited to study these
SOI-driven chiral spintronics effects, because it can be solved
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in a very transparent way without the need for a supercell
approach, open boundary conditions, or perturbation theory.
We describe scattering effects by the Gaussian scalar disorder
model. To investigate the role of disorder for the gyromagnetic
ratio in general, we study γ also in the two-dimensional Rashba
model with collinear magnetization. Additionally, we compute
the current-induced torques in the one-dimensional Rashba
model.

This paper is structured as follows: In Sec. II A we introduce
the one-dimensional Rashba model. In Sec. II B we discuss
the formalism for the calculation of the Gilbert damping
and of the gyromagnetic ratio. In Sec. II C we present the
formalism used to calculate the current-induced torques. In
Secs. III A, III B, and III C we discuss the gyromagnetic ratio,
the Gilbert damping, and the current-induced torques in the
one-dimensional Rashba model, respectively. This paper ends
with a summary in Sec. IV.

II. FORMALISM

A. One-dimensional Rashba model

The two-dimensional Rashba model is given by the Hamil-
tonian [19]

H = −
h̄2

2me

∂2

∂x2
−

h̄2

2me

∂2

∂y2

+ iαRσy

∂

∂x
− iαRσx

∂

∂y
+

�V

2
σ · M̂(r), (3)

where the first line describes the kinetic energy, the first two
terms in the second line describe the Rashba SOI, and the
last term in the second line describes the exchange splitting.
M̂(r) is the magnetization direction, which may depend on the
position r = (x,y), and σ is the vector of Pauli spin matrices.
By removing the terms with the y derivatives from Eq. (3),

i.e., − h̄2

2me

∂2

∂y2 and −iαRσx
∂
∂y

, one obtains a one-dimensional
variant of the Rashba model with the Hamiltonian [38]

H = −
h̄2

2me

∂2

∂x2
+ iαRσy

∂

∂x
+

�V

2
σ · M̂(x). (4)

Equation (4) is invariant under the simultaneous rotation of
σ and of the magnetization M̂ around the y axis. Therefore,
if M̂(x) describes a flat cycloidal spin spiral propagating into
the x direction, as given by

M̂(x) =





sin(qx)
0

cos(qx)



, (5)

we can use the unitary transformation

U(x) =

(

cos
(

qx

2

)

− sin
(

qx

2

)

sin
(

qx

2

)

cos
(

qx

2

)

)

(6)

in order to transform Eq. (4) into a position-independent
effective Hamiltonian [38]:

H =
1

2m

(

px + eAeff
x

)2
−

m(αR)2

2h̄2
+

�V

2
σz, (7)

where px = −ih̄∂/∂x is the x component of the momentum
operator and

Aeff
x = −

m

eh̄

(

αR +
h̄2

2m
q

)

σy (8)

is the x component of the effective magnetic vector potential.
Equation (8) shows that the noncollinearity described by q acts
like an effective SOI in the special case of the one-dimensional
Rashba model. This suggests to introduce the concept of
effective SOI strength

αR
eff = αR +

h̄2

2m
q. (9)

Based on this concept of the effective SOI strength one
can obtain the q dependence of the one-dimensional Rashba
model from its αR dependence at q = 0. That a noncollinear
magnetic texture provides a nonrelativistic effective SOI has
been found also in the context of the intrinsic contribution
to the nonadiabatic torque in the absence of relativistic SOI,
which can be interpreted as a spin-orbit torque arising from
this effective SOI [40]. While the Hamiltonian in Eq. (4)
depends on position x through the position dependence of the
magnetization M̂(x) in Eq. (5), the effective Hamiltonian in
Eq. (7) is not dependent on x and therefore easy to diagonalize.

B. Gilbert damping and gyromagnetic ratio

In collinear magnets damping and gyromagnetic ratio can
be extracted from the tensor [16]

�ij = −
1

V
lim
ω→0

ImGR
Ti ,Tj

(h̄ω)

h̄ω
, (10)

where V is the volume of the unit cell and

GR
Ti ,Tj

(h̄ω) = −i

∫ ∞

0
dteiωt 〈[Ti(t),Tj (0)]−〉 (11)

is the retarded torque-torque correlation function. Ti is the
ith component of the torque operator [16]. The dc-limit
ω → 0 in Eq. (10) is only justified when the frequency of
the magnetization dynamics, e.g., the ferromagnetic resonance
frequency, is smaller than the relaxation rate of the electronic
states. In thin magnetic layers and monoatomic chains on
substrates this is typically the case due to the strong interfacial
disorder. However, in very pure crystalline samples at low
temperatures the relaxation rate may be smaller than the ferro-
magnetic resonance frequency and one needs to assume ω > 0
in Eq. (10) [41,42]. The tensor � depends on the magnetization
direction M̂ and we decompose it into the tensor S, which
is even under magnetization reversal [S(M̂) = S(−M̂)], and
the tensor A, which is odd under magnetization reversal
[A(M̂) = −A(−M̂)], such that � = S + A, where

Sij (M̂) = 1
2 [�ij (M̂) + �ij (−M̂)] (12)

and

Aij (M̂) = 1
2 [�ij (M̂) − �ij (−M̂)]. (13)

One can show that S is symmetric, i.e., Sij (M̂) = Sji(M̂),
while A is antisymmetric, i.e., Aij (M̂) = −Aji(M̂).
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The Gilbert damping may be extracted from the symmetric
component S as follows [16]:

αG
ij =

|γ |Sij

Mµ0
, (14)

where M is the magnetization. The gyromagnetic ratio γ is
obtained from � according to the equation [16]

1

γ
=

1

2µ0M

∑

ijk

ǫijk�ijM̂k =
1

2µ0M

∑

ijk

ǫijkAijM̂k. (15)

It is convenient to discuss the gyromagnetic ratio in terms
of the dimensionless g factor, which is related to γ through
γ = gµ0µB/h̄. Consequently, the g factor is given by

1

g
=

µB

2h̄M

∑

ijk

ǫijk�ijM̂k =
µB

2h̄M

∑

ijk

ǫijkAijM̂k. (16)

Due to the presence of the Levi-Civita tensor ǫijk in Eq. (15)
and in Eq. (16) the gyromagnetic ratio and the g factor are
determined solely by the antisymmetric component A of �.

Various different conventions are used in the literature
concerning the sign of the g factor [43]. Here we define the sign
of the g factor such that γ > 0 for g > 0 and γ < 0 for g < 0.
According to Eq. (1) the rate of change of the magnetic moment
is therefore parallel to the torque for positive g and antiparallel
to the torque for negative g. While we are interested in this
work in the spectroscopic g factor, and hence in the relation
between the rate of change of the magnetic moment and the
torque, Ref. [43] discusses the relation between the magnetic
moment m and the angular momentum L that generates it,
i.e., m = γstatic L. Since differentiation with respect to time
and use of T = dL/dt leads to Eq. (1) our definition of the
signs of g and γ agrees essentially with the one suggested in
Ref. [43], which proposes to use a positive g when the magnetic
moment is parallel to the angular momentum generating it and
a negative g when the magnetic moment is antiparallel to the
angular momentum generating it.

Combining Eqs. (14) and (15) we can express the Gilbert
damping in terms of A and S as follows:

αG
xx =

Sxx

|Axy |
. (17)

In the independent particle approximation Eq. (10) can be
written as �ij = �

I(a)
ij + �

I(b)
ij + �II

ij , where

�
I(a)
ij =

1

h

∫

ddk

(2π )d
Tr

〈

TiG
R
k
(EF)TjG

A
k

(EF)
〉

,

�
I(b)
ij = −

1

h

∫

ddk

(2π )d
Re Tr

〈

TiG
R
k
(EF)TjG

R
k
(EF)

〉

,

�
II
ij =

1

h

∫

ddk

(2π )d

∫ EF

−∞

dE Re Tr

〈

TiG
R
k
(E)Tj

dGR
k
(E)

dE

− Ti

dGR
k
(E)

dE
TjG

R
k
(E)

〉

. (18)

Here d is the dimension (d = 1 or d = 2 or d = 3), GR
k
(E) is

the retarded Green’s function, and GA
k

(E) = [GR
k
(E)]†.EF is the

Fermi energy. �I(b)
ij is symmetric under the interchange of the

indices i and j while �II
ij is antisymmetric. The term �

I(a)
ij

contains both symmetric and antisymmetric components.
Since the Gilbert damping tensor is symmetric, both �

I(b)
ij

and �
I(a)
ij contribute to it. Since the gyromagnetic tensor is

antisymmetric, both �II
ij and �

I(a)
ij contribute to it.

In order to account for disorder we use the Gaussian scalar
disorder model, where the scattering potential V(r) satisfies
〈V(r)〉 = 0 and 〈V(r)V(r

′)〉 = Uδ(r − r
′). This model is

frequently used to calculate transport properties in disordered
multiband model systems [44], but it has also been combined
with ab initio electronic structure calculations to study the
anomalous Hall effect [45,46] and the anomalous Nernst effect
[47] in transition metals and their alloys.

In the clean limit, i.e., in the limit U → 0, the antisymmetric
contribution to Eq. (18) can be written as Aij = Aint

ij + Ascatt
ij ,

where the intrinsic part is given by

Aint
ij = h̄

∫

ddk

(2π )d

∑

n,m

[fkn − fkm]Im
T i

knmT
j

kmn

(Ekn − Ekm)2

= 2h̄

∫

ddk

(2π )d

∑

n

∑

ll′

fknIm

[

∂〈ukn|

∂M̂l

∂|ukn〉

∂M̂l′

]

×
∑

mm′

ǫilmǫj l′m′M̂mM̂m′ . (19)

The second line in Eq. (19) expresses Aint
ij in terms of the

Berry curvature in magnetization space [48]. The scattering
contribution is given by

Ascatt
ij = h̄

∑

nm

∫

ddk

(2π )d
δ(EF − Ekn)

× Im

{

−

[

Mi
knm

γ
kmn

γ
knn

T
j

knn − M
j

knm

γ
kmn

γ
knn

T i
knn

]

+
[

Mi
kmnT̃

j

knm − M
j

kmnT̃
i

knm

]

−

[

Mi
knm

γ
kmn

γ
knn

T̃
j

knn − M
j

knm

γ
kmn

γ
knn

T̃ i
knn

]

+

[

T̃ i
knn

γ
knm

γ
knn

T̃
j

kmn

Ekn − Ekm

− T̃
j

knn

γ
knm

γ
knn

T̃ i
kmn

Ekn − Ekm

]

+
1

2

[

T̃ i
knm

1

Ekn − Ekm

T̃
j

kmn − T̃
j

knm

1

Ekn − Ekm

T̃ i
kmn

]

+

[

T
j

knn

γ
knm

γ
knn

1

Ekn − Ekm

T̃ i
kmn

− T i
knn

γ
knm

γ
knn

1

Ekn − Ekm

T̃
j

kmn

]}

. (20)

Here T i
knm = 〈ukn|Ti |ukm〉 are the matrix elements of the

torque operator. T̃ i
knm denotes the vertex corrections of the

torque, which solve the equation

T̃ i
knm =

∑

p

∫

dnk′

(2π )n−1

δ(EF − Ek
′p)

2γ
k

′pp

×〈ukn|uk
′p〉

[

T̃ i
k

′pp
+ T i

k
′pp

]

〈uk
′p|ukm〉. (21)
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The matrix γ
knm is given by

γ
knm = −π

∑

p

∫

ddk′

(2π )d
δ(EF − Ek

′p)〈ukn|uk
′p〉〈uk

′p|ukm〉

(22)

and the Berry connection in magnetization space is defined as

iM
j

knm = i
T

j

knm

Ekm − Ekn

. (23)

The scattering contribution Eq. (20) formally resembles the
side-jump contribution to the AHE [44] as obtained from
the scalar disorder model: It can be obtained by replacing the
velocity operators in Ref. [44] by torque operators. We find that
in collinear magnets without SOI this scattering contribution
vanishes. The gyromagnetic ratio is then given purely by the
intrinsic contribution Eq. (19). This is an interesting difference
to the AHE: Without SOI all contributions to the AHE are zero
in collinear magnets, while both the intrinsic and the side-jump
contributions are generally nonzero in the presence of SOI.

In the absence of SOI Eq. (19) can be expressed in terms of
the magnetization [48]:

Aint
ij = −

h̄

2µB

∑

k

ǫijkMk. (24)

Inserting Eq. (24) into Eq. (16) yields g = −2, i.e., the
expected nonrelativistic value of the g factor.

The g factor in the presence of SOI is usually assumed to
be given by [49]

g = −2
Mspin + Morb

Mspin
= −2

M

Mspin
, (25)

where Morb is the orbital magnetization, Mspin is the spin
magnetization, and M = Morb + Mspin is the total magneti-
zation. The g factor obtained from Eq. (25) is usually in good
agreement with experimental results [50]. When SOI is absent,
the orbital magnetization is zero, Morb = 0, and consequently
Eq. (25) yields g = −2 in that case. Equation (16) can be
rewritten as

1

g
=

Mspin

M

µB

2h̄Mspin

∑

ijk

ǫijkAijM̂k =
Mspin

M

1

g1

, (26)

with

1

g1

=
µB

2h̄Mspin

∑

ijk

ǫijkAijM̂k. (27)

From the comparison of Eq. (26) with Eq. (25) it follows
that Eq. (25) holds exactly if g1 = −2 is satisfied. How-
ever, Eq. (27) usually yields g1 = −2 only in collinear
magnets when SOI is absent, otherwise g1 �= −2. In the
one-dimensional Rashba model the orbital magnetization is
zero, Morb = 0, and consequently

1

g
=

µB

2h̄Mspin

∑

ijk

ǫijkAijM̂k. (28)

The symmetric contribution can be written as Sij = S int
ij +

SRR−vert
ij + SRA−vert

ij , where

S int
ij =

1

h

∫

ddk

(2π )d
Tr

{

TiG
R
k
(EF)Tj

[

GA
k

(EF) − GR
k
(EF)

]}

(29)

and

SRR−vert
ij = −

1

h

∫

ddk

(2π )d
Tr

{

T̃ RR
i GR

k
(EF)Tj GR

k
(EF)

}

(30)

and

SAR−vert
ij =

1

h

∫

ddk

(2π )d
Tr

{

T̃ AR
i GR

k
(EF)Tj GA

k
(EF)

}

, (31)

where GR
k
(EF) = h̄[EF − H

k
− �R

k
(EF)]−1 is the retarded

Green’s function, GA
k

(EF) = [GR
k
(EF)]

†
is the advanced

Green’s function, and

�R(EF) =
U

h̄

∫

ddk

(2π )d
GR

k
(EF) (32)

is the retarded self-energy. The vertex corrections are deter-
mined by the equations

T̃
AR

= T +
U

h̄2

∫

ddk

(2π )d
GA

k
(EF)T̃

AR
k

GR
k
(EF) (33)

and

T̃
RR

= T +
U

h̄2

∫

ddk

(2π )d
GR

k
(EF)T̃

RR
k

GR
k
(EF). (34)

In contrast to the antisymmetric tensor A, which becomes
independent of the scattering strength U for sufficiently small
U , i.e., in the clean limit, the symmetric tensor S depends
strongly on U in metallic systems in the clean limit. S int

ij

and Sscatt
ij depend therefore on U through the self-energy and

through the vertex corrections.
In the case of the one-dimensional Rashba model, Eqs. (19)

and (20) for the antisymmetric tensor A and Eqs. (29), (30),
and (31) for the symmetric tensor S can be used both for the
collinear magnetic state as well as for the spin spiral of Eq. (5).
To obtain the g factor for the collinear magnetic state, we
plug the eigenstates and eigenvalues of Eq. (4) (with M̂ = êz)
into Eq. (19) and into Eq. (20). In the case of the spin spiral
of Eq. (5) we use instead the eigenstates and eigenvalues of
Eq. (7). Similarly, to obtain the Gilbert damping in the collinear
magnetic state, we evaluate Eqs. (29), (30), and (31) based on
the Hamiltonian in Eq. (4) and for the spin spiral we use instead
the effective Hamiltonian in Eq. (7).

C. Current-induced torques

The current-induced torque on the magnetization can be
expressed in terms of the torkance tensor tij as [15]

Ti =
∑

j

tijEj , (35)

where Ej is the j th component of the applied electric field and
Ti is the ith component of the torque per volume [51]. tij is
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the sum of three terms, tij = t
I(a)
ij + t

I(b)
ij + t II

ij , where [15]

t
I(a)
ij =

e

h

∫

ddk

(2π )d
Tr

〈

TiG
R
k
(EF)vjG

A
k

(EF)
〉

,

t
I(b)
ij = −

e

h

∫

ddk

(2π )d
Re Tr

〈

TiG
R
k
(EF)vjG

R
k
(EF)

〉

,

t
II
ij =

e

h

∫

ddk

(2π )d

∫ EF

−∞

dE Re Tr

〈

TiG
R
k
(E)vj

dGR
k
(E)

dE

− Ti

dGR
k
(E)

dE
vjG

R
k
(E)

〉

. (36)

We decompose the torkance into two parts that are, respec-
tively, even and odd with respect to magnetization reversal,
i.e., te

ij (M̂) = [tij (M̂) + tij (−M̂)]/2 and to
ij (M̂) = [tij (M̂) −

tij (−M̂)]/2.
In the clean limit, i.e., for U → 0, the even torkance can be

written as te
ij = t

e,int
ij + t

e,scatt
ij , where [15]

t
e,int
ij = 2eh̄

∫

ddk

(2π )d

∑

n�=m

fknIm
T i

knmv
j

kmn

(Ekn − Ekm)2
(37)

is the intrinsic contribution and

t
e,scatt
ij = eh̄

∑

nm

∫

ddk

(2π )d
δ(EF − Ekn)

× Im

{[

−Mi
knm

γ
kmn

γ
knn

v
j

knn + A
j

knm

γ
kmn

γ
knn

T i
knn

]

+
[

Mi
kmnṽ

j

knm − A
j

kmnT̃
i

knm

]

−

[

Mi
knm

γ
kmn

γ
knn

ṽ
j

knn − A
j

knm

γ
kmn

γ
knn

T̃ i
knn

]

+

[

ṽ
j

kmn

γ
knm

γ
knn

T̃ i
nn

Ekn − Ekm

− T̃ i
kmn

γ
knm

γ
knn

ṽ
j

knn

Ekn − Ekm

]

+
1

2

[

ṽ
j

knm

1

Ekn − Ekm

T̃ i
kmn − T̃ i

knm

1

Ekn − Ekm

ṽ
j

kmn

]

+

[

v
j

knn

γ
knm

γ
knn

1

Ekn − Ekm

T̃ i
kmn

− T i
knn

γ
knm

γ
knn

1

Ekn − Ekm

ṽ
j

kmn

]}

(38)

is the scattering contribution. Here

iA
j

knm = i
v

j

knm

Ekm − Ekn

=
i

h̄
〈ukn|

∂

∂kj
|ukm〉 (39)

is the Berry connection in k space and the vertex corrections
of the velocity operator solve the equation

ṽi
knm =

∑

p

∫

dnk′

(2π )n−1

δ(EF − Ek
′p)

2γ
k

′pp

×〈ukn|uk
′p〉

[

ṽi
k

′pp
+ vi

k
′pp

]

〈uk
′p|ukm〉. (40)

The odd contribution can be written as to
ij = t

o,int
ij + tRR−vert

ij +

tAR−vert
ij , where

t
o,int
ij =

e

h

∫

ddk

(2π )d
Tr

{

TiG
R
k
(EF)vj

[

GA
k

(EF) − GR
k
(EF)

]}

(41)

and

tRR−vert
ij = −

e

h

∫

ddk

(2π )d
Tr

{

T̃ RR
i GR

k
(EF)vjG

R
k
(EF)

}

(42)

and

tAR−vert
ij =

e

h

∫

ddk

(2π )d
Tr

{

T̃ AR
i GR

k
(EF)vjG

A
k

(EF)
}

. (43)

The vertex corrections T̃ AR
i and T̃ RR

i of the torque operator
are given in Eq. (33) and in Eq. (34), respectively.

While the even torkance, Eqs. (37) and (38), becomes
independent of the scattering strength U in the clean limit,
i.e., for U → 0, the odd torkance to

ij depends strongly on U in
metallic systems in the clean limit [15].

In the case of the one-dimensional Rashba model, Eqs. (37)
and (38) for the even torkance te

ij and Eqs. (41), (42), and (43)
for the odd torkance to

ij can be used both for the collinear
magnetic state as well as for the spin spiral of Eq. (5). To
obtain the even torkance for the collinear magnetic state, we
plug the eigenstates and eigenvalues of Eq. (4) (with M̂ = êz)
into Eq. (37) and into Eq. (38). In the case of the spin spiral
of Eq. (5) we use instead the eigenstates and eigenvalues of
Eq. (7). Similarly, to obtain the odd torkance in the collinear
magnetic state, we evaluate Eqs. (41), (42), and (43) based
on the Hamiltonian in Eq. (4) and for the spin spiral we use
instead the effective Hamiltonian in Eq. (7).

III. RESULTS

A. Gyromagnetic ratio

We first discuss the g factor in the collinear case, i.e., when
M̂(r) = êz. In this case the energy bands are given by

E =
h̄2k2

x

2m
±

√

1

4
(�V )2 + (αRkx)2. (44)

When �V �= 0 or αR �= 0 the energy E can become negative.
The band structure of the one-dimensional Rashba model is
shown in Fig. 1 for the model parameters αR = 2 eV Å and
�V = 0.5 eV. For this choice of parameters the energy minima
are not located at kx = 0 but instead at

kmin
x = ±

√

(αR)4m2 − 1
4 h̄4(�V )2

h̄2αR
, (45)

and the corresponding minimum of the energy is given by

Emin = −
m(αR)4 + 1

4
h̄4

m
(�V )2

2h̄2(αR)2
. (46)

The inverse g factor is shown as a function of the SOI strength
αR in Fig. 2 for the exchange splitting �V = 1 eV and Fermi
energy EF = 1.36 eV. At αR = 0 the scattering contribution
is zero, i.e., the g factor is determined completely by the
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FIG. 1. Band structure of the one-dimensional Rashba model.

intrinsic Berry curvature expression, Eq. (24). Thus, at αR = 0
it assumes the value 1/g = −0.5, which is the expected
nonrelativistic value [see the discussion below Eq. (24)].
With increasing SOI strength αR the intrinsic contribution to
1/g is more and more suppressed. However, the scattering
contribution compensates this decrease such that the total 1/g

is close to its nonrelativistic value of −0.5. The neglect of the
scattering corrections at large values of αR would lead in this
case to a strong underestimation of the magnitude of 1/g, i.e.,
a strong overestimation of the magnitude of g.

However, at smaller values of the Fermi energy, the g factor
can deviate substantially from its nonrelativistic value of −2.
To show this we plot in Fig. 3 the inverse g factor as a function
of the Fermi energy when the exchange splitting and the SOI
strength are set to �V = 1 eV and αR = 2 eV Å, respectively.
As discussed in Eq. (44) the minimal Fermi energy is negative
in this case. The intrinsic contribution to 1/g declines with
increasing Fermi energy. At large values of the Fermi energy
this decline is compensated by the increase of the vertex
corrections and the total value of 1/g is close to −0.5.

Previous theoretical works on the g factor have not
considered the scattering contribution [52]. It is therefore
important to find out whether the compensation of the decrease
of the intrinsic contribution by the increase of the extrinsic
contribution as discussed in Figs. 2 and 3 is peculiar to the
one-dimensional Rashba model or whether it can be found
in more general cases. For this reason we evaluate g1 for
the two-dimensional Rashba model. In Fig. 4 we show the
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FIG. 2. Inverse g factor vs SOI strength αR in the one-
dimensional Rashba model.
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FIG. 3. Inverse g factor vs Fermi energy in the one-dimensional
Rashba model.

inverse g1 factor in the two-dimensional Rashba model as
a function of SOI strength αR for the exchange splitting
�V = 1 eV and the Fermi energy EF = 1.36 eV. Indeed for
αR < 0.5 eV Å the scattering corrections tend to stabilize
g1 at its nonrelativistic value. However, in contrast to the
one-dimensional case (Fig. 2), where g does not deviate
much from its nonrelativistic value up to αR = 2 eV Å, g1

starts to be affected by SOI at smaller values of αR in the
two-dimensional case. According to Eq. (26) the full g factor
is given by g = g1(1 + Morb/Mspin). Therefore, when the
scattering corrections stabilize g1 at its nonrelativistic value
Eq. (25) is satisfied. In the two-dimensional Rashba model
Morb = 0 when both bands are occupied. For the Fermi energy
EF = 1.36 eV both bands are occupied and therefore g = g1

for the range of parameters used in Fig. 4.
The inverse g1 of the two-dimensional Rashba model is

shown in Fig. 5 as a function of Fermi energy for the parameters
�V = 1 eV and αR = 2 eV Å. The scattering correction is as
large as the intrinsic contribution when EF > 1 eV. While the
scattering correction is therefore important, it is not sufficiently
large to bring g1 close to its nonrelativistic value in the energy
range shown in the figure, which is a major difference to
the one-dimensional case illustrated in Fig. 3. According to
Eq. (26) the g factor is related to g1 by g = g1M/Mspin.
Therefore, we show in Fig. 6 the ratio M/Mspin as a function
of Fermi energy. At high Fermi energy (when both bands are
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FIG. 4. Inverse g1 factor vs SOI strength αR in the two-
dimensional Rashba model.
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FIG. 5. Inverse g1 factor 1/g1 vs Fermi energy in the two-
dimensional Rashba model.

occupied) the orbital magnetization is zero and M/Mspin = 1.
At low Fermi energy the sign of the orbital magnetization
is opposite to the sign of the spin magnetization such that
the magnitude of M is smaller than the magnitude of Mspin

resulting in the ratio M/Mspin < 1.
Next, we discuss the g factor of the one-dimensional Rashba

model in the noncollinear case. In Fig. 7 we plot the inverse
g factor and its decomposition into the intrinsic and scattering
contributions as a function of the spin-spiral wave vector q,
where exchange splitting, SOI strength, and Fermi energy
are set to �V = 1 eV, αR = 2 eV Å, and EF = 1.36 eV,
respectively. Since the curves are not symmetric around q = 0,
the g factor at wave number q differs from the one at −q,
i.e., the gyromagnetism in the Rashba model is chiral. At
q = −2meα

R/h̄2 the g factor assumes the value of g = −2
and the scattering corrections are zero. Moreover, the curves
are symmetric around q = −2meα

R/h̄2. These observations
can be explained by the concept of the effective SOI introduced
in Eq. (9): At q = −2meα

R/h̄2 the effective SOI is zero
and consequently the noncollinear magnet behaves like a
collinear magnet without SOI at this value of q. As we have
discussed above in Fig. 2, the g factor of collinear magnets is
g = −2 when SOI is absent, which explains why it is also
g = −2 in noncollinear magnets with q = −2meα

R/h̄2. If
only the intrinsic contribution is considered and the scattering
corrections are neglected, 1/g varies much stronger around the
point of zero effective SOI q = −2meα

R/h̄2, i.e., the scattering
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FIG. 6. Ratio of total magnetization and spin magnetization
M/Mspin vs Fermi energy in the two-dimensional Rashba model.
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FIG. 7. Inverse g factor 1/g vs wave number q in the one-
dimensional Rashba model.

corrections stabilize g at its nonrelativistic value close to the
point of zero effective SOI.

B. Damping

We first discuss the Gilbert damping in the collinear case,
i.e., we set M̂(r) = êz in Eq. (4). The xx component of the
Gilbert damping is shown in Fig. 8 as a function of scattering
strength U for the following model parameters: exchange
splitting �V = 1 eV, Fermi energy EF = 2.72 eV, and SOI
strength αR = 0. All three contributions are individually
nonzero, but the contribution from the RR-vertex correction
[Eq. (30)] is much smaller than the one from the AR-vertex
correction [Eq. (31)] and much smaller than the intrinsic
contribution [Eq. (29)]. However, in this case the total damping
is zero, because a nonzero damping in periodic crystals
with collinear magnetization is only possible when SOI is
present [53].

In Fig. 9 we show the xx component of the Gilbert damping
αG

xx as a function of scattering strength U for the model
parameters �V = 1 eV, EF = 2.72 eV, and αR = 2 eV Å.
The dominant contribution is the AR-vertex correction. The
damping as obtained based on Eq. (10) diverges like 1/U in
the limit U → 0, i.e., proportional to the relaxation time τ

[53]. However, once the relaxation time τ is larger than the
inverse frequency of the magnetization dynamics the dc-limit
ω → 0 in Eq. (10) is not appropriate and ω > 0 needs to

0 1 2 3 4
Scattering strength U [(eV)

2
Å]

-0.4

-0.2

0

0.2

0.4

G
il

be
rt

 D
am

pi
ng

 α
G xx

RR-Vertex
AR-Vertex
intrinsic
total

FIG. 8. Gilbert damping αG
xx vs scattering strength U in the

one-dimensional Rashba model without SOI. In this case the vertex
corrections and the intrinsic contribution sum up to zero.
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FIG. 9. Gilbert damping αG
xx vs scattering strength U in the one-

dimensional Rashba model with SOI.

be used. It has been shown that the Gilbert damping is not
infinite in the ballistic limit τ → ∞ when ω > 0 [41,42]. In
the one-dimensional Rashba model the effective magnetic field
exerted by SOI on the electron spins points in the y direction.
Since a magnetic field along y direction cannot lead to a torque
in y direction the yy component of the Gilbert damping αG

yy is
zero (not shown in the figure).

Next, we discuss the Gilbert damping in the noncollinear
case. In Fig. 10 we plot the xx component of the Gilbert
damping as a function of spin spiral wave number q for the
model parameters �V = 1 eV, EF = 1.36 eV, αR = 2 eV Å,
and the scattering strength U = 0.98 (eV)2 Å. The curves
are symmetric around q = −2meα

R/h̄2, because the damping
is determined by the effective SOI defined in Eq. (9). At
q = −2meα

R/h̄2 the effective SOI is zero and therefore the
total damping is zero as well. The damping at wave number q

differs from the one at wave number −q, i.e., the damping is

chiral in the Rashba model. Around the point q = −2meα
R/h̄2

the damping is described by a quadratic parabola at first. In the

regions −2 Å
−1

< q < −1.2 Å−1 and 0.2 Å
−1

< q < 1 Å−1

this trend is interrupted by a W-shape behavior. In the quadratic
parabola region the lowest energy band crosses the Fermi
energy twice. As shown in Fig. 1 the lowest band has a local
maximum at q = 0. In the W-shape region this local maximum
shifts upwards, approaches the Fermi level, and finally passes
it such that the lowest energy band crosses the Fermi level four
times. This transition in the band structure leads to oscillations
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FIG. 10. Gilbert damping αG
xx vs spin spiral wave number q in

the one-dimensional Rashba model.
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FIG. 11. Gilbert damping αG
yy vs spin spiral wave number q in

the one-dimensional Rashba model.

in the density of states, which results in the W-shape behavior
of the Gilbert damping.

Since the damping is determined by the effective SOI, we
can use Fig. 10 to draw conclusions about the damping in the
noncollinear case with αR = 0: We only need to shift all curves
in Fig. 10 to the right such that they are symmetric around
q = 0 and shift the Fermi energy. Thus, for αR = 0 the Gilbert
damping does not vanish if q �= 0. Since for αR = 0 angular
momentum transfer from the electronic system to the lattice
is not possible, the damping is purely nonlocal in this case,
i.e., angular momentum is interchanged between electrons at
different positions. This means that for a volume in which the
magnetization of the spin spiral in Eq. (5) performs exactly one
revolution between one end of the volume and the other end the
total angular momentum change associated with the damping
is zero, because the angular momentum is simply redistributed
within this volume and there is no net change of the angular
momentum. A substantial contribution of nonlocal damping
has also been predicted for domain walls in permalloy [35].

In Fig. 11 we plot the yy component of the Gilbert damping
as a function of spin spiral wave number q for the model
parameters �V = 1 eV, EF = 1.36 eV, αR = 2 eV Å, and
the scattering strength U = 0.98 (eV)2 Å. The total damping
is zero in this case. This can be understood from the sym-
metry properties of the one-dimensional Rashba Hamiltonian,
Eq. (4): Since this Hamiltonian is invariant when both σ and M̂

are rotated around the y axis, the damping coefficient αG
yy does
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FIG. 12. Torkance tyx vs Fermi energy EF in the one-dimensional
Rashba model.
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FIG. 13. Nonadiabatic torkance tyx vs SOI parameter αR in the
two-dimensional Rashba model.

not depend on the position within the cycloidal spin spiral of
Eq. (5). Therefore, nonlocal damping is not possible in this case
and αG

yy has to be zero when αR = 0. It remains to be shown that

αG
yy = 0 also for αR �= 0. However, this follows directly from

the observation that the damping is determined by the effective
SOI, Eq. (9), meaning that any case with q �= 0 and αR �= 0
can always be mapped onto a case with q �= 0 and αR = 0. As
an alternative argumentation we can also invoke the finding
discussed above that αG

yy = 0 in the collinear case. Since the
damping is determined by the effective SOI, it follows that
αG

yy = 0 also in the noncollinear case.

C. Current-induced torques

We first discuss the yx component of the torkance. In Fig. 12
we show the torkance tyx as a function of the Fermi energy EF

for the model parameters �V = 1 eV and αR = 2 eV Å when
the magnetization is collinear and points in the z direction.
We specify the torkance in units of the positive elementary
charge e, which is a convenient choice for the one-dimensional
Rashba model. When the torkance is multiplied with the
electric field, we obtain the torque per length (see Eq. (35) and
Ref. [51]). Since the effective magnetic field from SOI points
in y direction, it cannot give rise to a torque in y direction and
consequently the total tyx is zero. Interestingly, the intrinsic
and scattering contributions are individually nonzero. The
intrinsic contribution is nonzero, because the electric field
accelerates the electrons such that h̄k̇x = −eEx . Therefore,
the effective magnetic field BSOI

y = αRkx/µB changes as well,

i.e., ḂSOI
y = αRk̇x/µB = −αRExe/(h̄µB). Consequently, the

electron spin is no longer aligned with the total effective
magnetic field (the effective magnetic field resulting from both
SOI and from the exchange splitting �V ), when an electric
field is applied. While the total effective magnetic field lies
in the yz plane, the electron spin acquires an x component,
because it precesses around the total effective magnetic field,
with which it is not aligned due to the applied electric field
[54]. The x component of the spin density results in a torque in
y direction, which is the reason why the intrinsic contribution
to tyx is nonzero. The scattering contribution to tyx cancels the
intrinsic contribution such that the total tyx is zero and angular
momentum conservation is satisfied.
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FIG. 14. Torkance txx vs scattering strength U in the one-
dimensional Rashba model.

Using the concept of effective SOI, Eq. (9), we conclude
that tyx is also zero for the noncollinear spin spiral described
by Eq. (5). Thus, both the y component of the spin-orbit torque
and the nonadiabatic torque are zero for the one-dimensional
Rashba model.

To show that tyx = 0 is a peculiarity of the one-dimensional
Rashba model, we plot in Fig. 13 the torkance tyx in the
two-dimensional Rashba model. The intrinsic and scattering
contributions depend linearly on αR for small values of αR,
but the slopes are opposite such that the total tyx is zero for
sufficiently small αR. However, for larger values of αR the
intrinsic and scattering contributions do not cancel each other
and therefore the total tyx becomes nonzero, in contrast to the
one-dimensional Rashba model, where tyx = 0 even for large
αR. Several previous works determined the part of tyx that
is proportional to αR in the two-dimensional Rashba model
and found it to be zero [21,22] for scalar disorder, which is
consistent with our finding that the linear slopes of the intrinsic
and scattering contributions to tyx are opposite for small αR.

Next, we discuss the xx component of the torkance in the
collinear case (M̂ = êz). In Fig. 14 we plot the torkance txx vs
scattering strength U in the one-dimensional Rashba model for
the parameters �V = 1 eV, EF = 2.72 eV, and αR = 2 eV Å.
The dominant contribution is the AR-type vertex correction
[see Eq. (43)]. txx diverges like 1/U in the limit U → 0 as
expected for the odd torque in metallic systems [15].
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FIG. 15. Torkance txx vs wave vector q in the one-dimensional
Rashba model with SOI.
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FIG. 16. Torkance txx vs wave vector q in the one-dimensional
Rashba model without SOI.

In Figs. 15 and 16 we plot txx as a function of spin-spiral
wave number q for the model parameters �V = 1 eV, EF =

2.72 eV, and U = 0.18 (eV)2 Å. In Fig. 15 the case with αR = 2
eV Å is shown, while Fig. 16 illustrates the case with αR = 0.
In the case αR = 0 the torkance txx describes the spin-transfer
torque (STT). In the case αR �= 0 the torkance txx is the sum
of contributions from STT and spin-orbit torque (SOT). The
curves with αR = 0 and αR �= 0 are essentially related by a
shift of �q = −2meα

R/h̄2, which can be understood based on
the concept of the effective SOI, Eq. (9). Thus, in the special

case of the one-dimensional Rashba model STT and SOT are
strongly related.

IV. SUMMARY

We study chiral damping, chiral gyromagnetism, and
current-induced torques in the one-dimensional Rashba model
with an additional Néel-type noncollinear magnetic exchange
field. In order to describe scattering effects we use a Gaussian
scalar disorder model. Scattering contributions are generally
important in the one-dimensional Rashba model with the
exception of the gyromagnetic ratio in the collinear case
with zero SOI, where the scattering corrections vanish in
the clean limit. In the one-dimensional Rashba model SOI
and noncollinearity can be combined into an effective SOI.
Using the concept of effective SOI, results for the magnetically
collinear one-dimensional Rashba model can be used to predict
the behavior in the noncollinear case. In the noncollinear
Rashba model the Gilbert damping is nonlocal and does not
vanish for zero SOI. The scattering corrections tend to stabilize
the gyromagnetic ratio in the one-dimensional Rashba model
at its nonrelativistic value. Both the Gilbert damping and the
gyromagnetic ratio are chiral for nonzero SOI strength. The
antidampinglike spin-orbit torque and the nonadiabatic torque
for Néel-type spin spirals are zero in the one-dimensional
Rashba model, while the antidampinglike spin-orbit torque is
nonzero in the two-dimensional Rashba model for sufficiently
large SOI-strength.
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