001     837796
005     20220930130131.0
024 7 _ |a 10.1126/science.aao2825
|2 doi
024 7 _ |a pmid:28882996
|2 pmid
024 7 _ |a WOS:000412359600065
|2 WOS
024 7 _ |a altmetric:24916379
|2 altmetric
037 _ _ |a FZJ-2017-06585
041 _ _ |a English
082 _ _ |a 500
100 1 _ |0 P:(DE-Juel1)145165
|a Gremer, Lothar
|b 0
|u fzj
245 _ _ |a Fibril structure of amyloid-ß(1-42) by cryoelectron microscopy
260 _ _ |a Washington, DC [u.a.]
|b American Association for the Advancement of Science
|c 2017
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1508321558_25973
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
500 _ _ |a Journal title: Science
520 _ _ |a Amyloids are implicated in neurodegenerative diseases. Fibrillar aggregates of the amyloid-β protein (Aβ) are the main component of the senile plaques found in brains of Alzheimer’s disease patients. We present the structure of an Aβ(1-42) fibril composed of two intertwined protofilaments determined by cryoelectron microscopy (cryo-EM) to 4.0 Å resolution, complemented by solid-state nuclear magnetic resonance (NMR) experiments. The backbone of all 42 residues and nearly all sidechains are well resolved in the EM density map, including the entire N terminus, which is part of the cross-β structure resulting in an overall “LS”-shaped topology of individual subunits. The dimer interface protects the hydrophobic C termini from the solvent. The unique staggering of the nonplanar subunits results in markedly different fibril ends, termed “groove” and “ridge,” leading to different binding pathways on both fibril ends, which has implications for fibril growth.
536 _ _ |0 G:(DE-HGF)POF3-553
|a 553 - Physical Basis of Diseases (POF3-553)
|c POF3-553
|f POF III
|x 0
700 1 _ |0 P:(DE-Juel1)165604
|a Schölzel, Daniel
|b 1
|u fzj
700 1 _ |0 P:(DE-Juel1)165919
|a Schenk, Carla
|b 2
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Reinartz, Elke
|b 3
700 1 _ |0 P:(DE-Juel1)131973
|a Labahn, Jörg
|b 4
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Ravelli, Raimond B. G.
|b 5
700 1 _ |0 P:(DE-Juel1)131709
|a Tusche, Markus
|b 6
|u fzj
700 1 _ |0 P:(DE-HGF)0
|a Lopez-Iglesias, Carmen
|b 7
700 1 _ |0 P:(DE-Juel1)166306
|a Hoyer, Wolfgang
|b 8
|u fzj
700 1 _ |0 P:(DE-Juel1)132002
|a Heise, Henrike
|b 9
|u fzj
700 1 _ |0 P:(DE-Juel1)132029
|a Willbold, Dieter
|b 10
|e Corresponding author
|u fzj
700 1 _ |0 P:(DE-Juel1)132018
|a Schröder, Gunnar
|b 11
|e Corresponding author
|u fzj
773 _ _ |0 PERI:(DE-600)2066996-3
|a 10.1126/science.aao2825
|p 116-119
|t Science
|v 358
|x 0036-8075
|y 2017
856 4 _ |u https://juser.fz-juelich.de/record/837796/files/Fibril%20structure%20of%20amyloid-%CE%B2%281%E2%80%9342%29%20by%20cryo%E2%80%93electron%20microscopy.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837796/files/Fibril%20structure%20of%20amyloid-%CE%B2%281%E2%80%9342%29%20by%20cryo%E2%80%93electron%20microscopy.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:837796
|p VDB
|p OpenAPC
|p openCost
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)145165
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)165604
|a Forschungszentrum Jülich
|b 1
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)165919
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131973
|a Forschungszentrum Jülich
|b 4
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131709
|a Forschungszentrum Jülich
|b 6
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)166306
|a Forschungszentrum Jülich
|b 8
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)132002
|a Forschungszentrum Jülich
|b 9
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)132029
|a Forschungszentrum Jülich
|b 10
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)132018
|a Forschungszentrum Jülich
|b 11
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-553
|1 G:(DE-HGF)POF3-550
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l BioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|v Physical Basis of Diseases
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0430
|2 StatID
|a National-Konsortium
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b SCIENCE : 2015
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)1060
|2 StatID
|a DBCoverage
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)1150
|2 StatID
|a DBCoverage
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |0 StatID:(DE-HGF)1040
|2 StatID
|a DBCoverage
|b Zoological Record
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
915 _ _ |0 StatID:(DE-HGF)9930
|2 StatID
|a IF >= 30
|b SCIENCE : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ICS-6-20110106
|k ICS-6
|l Strukturbiochemie
|x 0
980 1 _ |a APC
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ICS-6-20110106
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-7-20200312


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21