000837797 001__ 837797
000837797 005__ 20210129231429.0
000837797 0247_ $$2doi$$a10.1021/acs.biochem.7b00677
000837797 0247_ $$2Handle$$a2128/15632
000837797 0247_ $$2pmid$$apmid:28820590
000837797 0247_ $$2WOS$$aWOS:000411548900009
000837797 0247_ $$2altmetric$$aaltmetric:24165353
000837797 037__ $$aFZJ-2017-06586
000837797 082__ $$a570
000837797 1001_ $$0P:(DE-HGF)0$$aToulmin, A.$$b0
000837797 245__ $$aConformational Heterogeneity in a Fully Complementary DNA Three-Way Junction with a GC-Rich Branchpoint.
000837797 260__ $$aColumbus, Ohio$$bAmerican Chemical Society$$c2017
000837797 3367_ $$2DRIVER$$aarticle
000837797 3367_ $$2DataCite$$aOutput Types/Journal article
000837797 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1508324125_25969
000837797 3367_ $$2BibTeX$$aARTICLE
000837797 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837797 3367_ $$00$$2EndNote$$aJournal Article
000837797 520__ $$aDNA three-way junctions (3WJs) are branched structures that serve as important biological intermediates and as components in DNA nanostructures. We recently derived the global structure of a fully complementary 3WJ and found that it contained unpaired bases at the branchpoint, which is consistent with previous observations of branch flexibility and branchpoint reactivity. By combining high-resolution single-molecule Förster resonance energy transfer, molecular modeling, time-resolved ensemble fluorescence spectroscopy, and the first 19F nuclear magnetic resonance observations of fully complementary 3WJs, we now show that the 3WJ structure can adopt multiple distinct conformations depending upon the sequence at the branchpoint. A 3WJ with a GC-rich branchpoint adopts an open conformation with unpaired bases at the branch and at least one additional conformation with an increased number of base interactions at the branchpoint. This structural diversity has implications for branch interactions and processing in vivo and for technological applications.
000837797 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0
000837797 7001_ $$0P:(DE-HGF)0$$aBaltierra-Jasso, L. E.$$b1
000837797 7001_ $$0P:(DE-HGF)0$$aMorten, M. J.$$b2
000837797 7001_ $$0P:(DE-HGF)0$$aSabir, T.$$b3
000837797 7001_ $$0P:(DE-HGF)0$$aMcGlynn, P.$$b4
000837797 7001_ $$0P:(DE-Juel1)132018$$aSchröder, Gunnar$$b5
000837797 7001_ $$0P:(DE-HGF)0$$aSmith, B. O.$$b6
000837797 7001_ $$0P:(DE-HGF)0$$aMagennis, S. W.$$b7$$eCorresponding author
000837797 773__ $$0PERI:(DE-600)1472258-6$$a10.1021/acs.biochem.7b00677$$n37$$p4985–4991$$tBiochemistry$$v56$$x0006-2960$$y2017
000837797 8564_ $$uhttps://juser.fz-juelich.de/record/837797/files/Conformational%20Heterogeneity%20in%20a%20Fully%20Complementary%20DNA%20Three-Way%20Junction%20with%20a%20GC-Rich%20Branchpoint.pdf$$yOpenAccess
000837797 8564_ $$uhttps://juser.fz-juelich.de/record/837797/files/Conformational%20Heterogeneity%20in%20a%20Fully%20Complementary%20DNA%20Three-Way%20Junction%20with%20a%20GC-Rich%20Branchpoint.gif?subformat=icon$$xicon$$yOpenAccess
000837797 8564_ $$uhttps://juser.fz-juelich.de/record/837797/files/Conformational%20Heterogeneity%20in%20a%20Fully%20Complementary%20DNA%20Three-Way%20Junction%20with%20a%20GC-Rich%20Branchpoint.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000837797 8564_ $$uhttps://juser.fz-juelich.de/record/837797/files/Conformational%20Heterogeneity%20in%20a%20Fully%20Complementary%20DNA%20Three-Way%20Junction%20with%20a%20GC-Rich%20Branchpoint.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000837797 8564_ $$uhttps://juser.fz-juelich.de/record/837797/files/Conformational%20Heterogeneity%20in%20a%20Fully%20Complementary%20DNA%20Three-Way%20Junction%20with%20a%20GC-Rich%20Branchpoint.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000837797 8564_ $$uhttps://juser.fz-juelich.de/record/837797/files/Conformational%20Heterogeneity%20in%20a%20Fully%20Complementary%20DNA%20Three-Way%20Junction%20with%20a%20GC-Rich%20Branchpoint.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000837797 909CO $$ooai:juser.fz-juelich.de:837797$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000837797 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)132018$$aForschungszentrum Jülich$$b5$$kFZJ
000837797 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000837797 9141_ $$y2017
000837797 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837797 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000837797 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000837797 915__ $$0LIC:(DE-HGF)PublisherOA$$2HGFVOC$$aFree to read
000837797 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bBIOCHEMISTRY-US : 2015
000837797 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837797 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000837797 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837797 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000837797 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000837797 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000837797 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000837797 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000837797 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000837797 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000837797 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837797 920__ $$lyes
000837797 9201_ $$0I:(DE-Juel1)ICS-6-20110106$$kICS-6$$lStrukturbiochemie$$x0
000837797 9801_ $$aFullTexts
000837797 980__ $$ajournal
000837797 980__ $$aVDB
000837797 980__ $$aUNRESTRICTED
000837797 980__ $$aI:(DE-Juel1)ICS-6-20110106
000837797 981__ $$aI:(DE-Juel1)IBI-7-20200312