000837814 001__ 837814
000837814 005__ 20220930130131.0
000837814 0247_ $$2doi$$a10.1016/j.mri.2017.08.007
000837814 0247_ $$2ISSN$$a0730-725X
000837814 0247_ $$2ISSN$$a1873-5894
000837814 0247_ $$2WOS$$aWOS:000417772500002
000837814 037__ $$aFZJ-2017-06603
000837814 041__ $$aEnglish
000837814 082__ $$a610
000837814 1001_ $$0P:(DE-Juel1)131766$$aGrinberg, Farida$$b0$$eCorresponding author$$ufzj
000837814 245__ $$aMicrostructure-informed slow diffusion tractography in humans enhances visualisation of fibre pathways
000837814 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2018
000837814 3367_ $$2DRIVER$$aarticle
000837814 3367_ $$2DataCite$$aOutput Types/Journal article
000837814 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1505477715_21918
000837814 3367_ $$2BibTeX$$aARTICLE
000837814 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837814 3367_ $$00$$2EndNote$$aJournal Article
000837814 520__ $$aConventional fibre tractography methods based on diffusion tensor imaging exploit diffusion anisotropy and directionality in the range of low diffusion weightings (b-values). High b-value Biexponential Diffusion Tensor Analysis reported previously has demonstrated that fractional anisotropy of the slow diffusion component is essentially higher than that of conventional diffusion tensor imaging whereas popular compartment models associate this slow diffusion component with axonal water fraction. One of the primary aims of this study is to elucidate the feasibility and potential benefits of “microstructure-informed” whole-brain slow-diffusion fibre tracking (SDIFT) in humans. In vivo diffusion-weighted images in humans were acquired in the extended range of diffusion weightings ≤ 6000 s mm− 2 at 3 T. Fast and slow diffusion tensors were reconstructed using the bi-exponential tensor decomposition, and a detailed statistical analysis of the relevant whole-brain tensor metrics was performed. We visualised three-dimensional fibre tracts in in vivo human brains using deterministic streamlining via the major eigenvector of the slow diffusion tensor. In particular, we demonstrated that slow-diffusion fibre tracking provided considerably higher fibre counts of long association fibres and allowed one to reconstruct more short association fibres than conventional diffusion tensor imaging. SDIFT is suggested to be useful as a complimentary method capable to enhance reliability and visualisation of the evaluated fibre pathways. It is especially informative in precortical areas where the uncertainty of the mono-exponential tensor evaluation becomes too high due to decreased anisotropy of low b-value diffusion in these areas. Benefits can be expected in assessment of the residual axonal integrity in tissues affected by various pathological conditions, in surgical planning, and in evaluation of cortical connectivity, in particular, between Brodmann's areas.
000837814 536__ $$0G:(DE-HGF)POF3-573$$a573 - Neuroimaging (POF3-573)$$cPOF3-573$$fPOF III$$x0
000837814 588__ $$aDataset connected to CrossRef
000837814 7001_ $$0P:(DE-HGF)0$$aMaximov, Ivan I.$$b1
000837814 7001_ $$0P:(DE-Juel1)138244$$aFarrher, Ezequiel$$b2$$ufzj
000837814 7001_ $$0P:(DE-Juel1)131794$$aShah, N. J.$$b3$$ufzj
000837814 773__ $$0PERI:(DE-600)1500646-3$$a10.1016/j.mri.2017.08.007$$gVol. 45, p. 7 - 17$$p7 - 17$$tMagnetic resonance imaging$$v45$$x0730-725X$$y2018
000837814 8564_ $$uhttps://juser.fz-juelich.de/record/837814/files/1-s2.0-S0730725X17301716-main.pdf$$yRestricted
000837814 8564_ $$uhttps://juser.fz-juelich.de/record/837814/files/1-s2.0-S0730725X17301716-main.gif?subformat=icon$$xicon$$yRestricted
000837814 8564_ $$uhttps://juser.fz-juelich.de/record/837814/files/1-s2.0-S0730725X17301716-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000837814 8564_ $$uhttps://juser.fz-juelich.de/record/837814/files/1-s2.0-S0730725X17301716-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000837814 8564_ $$uhttps://juser.fz-juelich.de/record/837814/files/1-s2.0-S0730725X17301716-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000837814 8564_ $$uhttps://juser.fz-juelich.de/record/837814/files/1-s2.0-S0730725X17301716-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000837814 8767_ $$8075400730-725X$$92017-09-12$$d2017-09-15$$eColour charges$$jZahlung erfolgt
000837814 8767_ $$92017-09-12$$d2017-09-12$$eColour charges$$jStorniert$$zElsevier hat Credit als Bestätigung geschickt
000837814 909CO $$ooai:juser.fz-juelich.de:837814$$pOpenAPC$$pVDB$$popenCost
000837814 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000837814 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000837814 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000837814 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bMAGN RESON IMAGING : 2015
000837814 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837814 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000837814 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000837814 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837814 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000837814 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837814 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837814 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000837814 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000837814 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131766$$aForschungszentrum Jülich$$b0$$kFZJ
000837814 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)138244$$aForschungszentrum Jülich$$b2$$kFZJ
000837814 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131794$$aForschungszentrum Jülich$$b3$$kFZJ
000837814 9131_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000837814 9141_ $$y2018
000837814 9201_ $$0I:(DE-Juel1)INM-4-20090406$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000837814 9201_ $$0I:(DE-Juel1)INM-11-20170113$$kINM-11$$lJara-Institut Quantum Information$$x1
000837814 9201_ $$0I:(DE-82)080010_20140620$$kJARA-BRAIN$$lJARA-BRAIN$$x2
000837814 980__ $$ajournal
000837814 980__ $$aVDB
000837814 980__ $$aI:(DE-Juel1)INM-4-20090406
000837814 980__ $$aI:(DE-Juel1)INM-11-20170113
000837814 980__ $$aI:(DE-82)080010_20140620
000837814 980__ $$aAPC
000837814 980__ $$aUNRESTRICTED
000837814 9801_ $$aAPC