001     837814
005     20220930130131.0
024 7 _ |2 doi
|a 10.1016/j.mri.2017.08.007
024 7 _ |2 ISSN
|a 0730-725X
024 7 _ |2 ISSN
|a 1873-5894
024 7 _ |a WOS:000417772500002
|2 WOS
037 _ _ |a FZJ-2017-06603
041 _ _ |a English
082 _ _ |a 610
100 1 _ |0 P:(DE-Juel1)131766
|a Grinberg, Farida
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Microstructure-informed slow diffusion tractography in humans enhances visualisation of fibre pathways
260 _ _ |a Amsterdam [u.a.]
|b Elsevier Science
|c 2018
336 7 _ |2 DRIVER
|a article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
|b journal
|m journal
|s 1505477715_21918
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |0 0
|2 EndNote
|a Journal Article
520 _ _ |a Conventional fibre tractography methods based on diffusion tensor imaging exploit diffusion anisotropy and directionality in the range of low diffusion weightings (b-values). High b-value Biexponential Diffusion Tensor Analysis reported previously has demonstrated that fractional anisotropy of the slow diffusion component is essentially higher than that of conventional diffusion tensor imaging whereas popular compartment models associate this slow diffusion component with axonal water fraction. One of the primary aims of this study is to elucidate the feasibility and potential benefits of “microstructure-informed” whole-brain slow-diffusion fibre tracking (SDIFT) in humans. In vivo diffusion-weighted images in humans were acquired in the extended range of diffusion weightings ≤ 6000 s mm− 2 at 3 T. Fast and slow diffusion tensors were reconstructed using the bi-exponential tensor decomposition, and a detailed statistical analysis of the relevant whole-brain tensor metrics was performed. We visualised three-dimensional fibre tracts in in vivo human brains using deterministic streamlining via the major eigenvector of the slow diffusion tensor. In particular, we demonstrated that slow-diffusion fibre tracking provided considerably higher fibre counts of long association fibres and allowed one to reconstruct more short association fibres than conventional diffusion tensor imaging. SDIFT is suggested to be useful as a complimentary method capable to enhance reliability and visualisation of the evaluated fibre pathways. It is especially informative in precortical areas where the uncertainty of the mono-exponential tensor evaluation becomes too high due to decreased anisotropy of low b-value diffusion in these areas. Benefits can be expected in assessment of the residual axonal integrity in tissues affected by various pathological conditions, in surgical planning, and in evaluation of cortical connectivity, in particular, between Brodmann's areas.
536 _ _ |0 G:(DE-HGF)POF3-573
|a 573 - Neuroimaging (POF3-573)
|c POF3-573
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |0 P:(DE-HGF)0
|a Maximov, Ivan I.
|b 1
700 1 _ |0 P:(DE-Juel1)138244
|a Farrher, Ezequiel
|b 2
|u fzj
700 1 _ |0 P:(DE-Juel1)131794
|a Shah, N. J.
|b 3
|u fzj
773 _ _ |0 PERI:(DE-600)1500646-3
|a 10.1016/j.mri.2017.08.007
|g Vol. 45, p. 7 - 17
|p 7 - 17
|t Magnetic resonance imaging
|v 45
|x 0730-725X
|y 2018
856 4 _ |u https://juser.fz-juelich.de/record/837814/files/1-s2.0-S0730725X17301716-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837814/files/1-s2.0-S0730725X17301716-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837814/files/1-s2.0-S0730725X17301716-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837814/files/1-s2.0-S0730725X17301716-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837814/files/1-s2.0-S0730725X17301716-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837814/files/1-s2.0-S0730725X17301716-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:837814
|p VDB
|p OpenAPC
|p openCost
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131766
|a Forschungszentrum Jülich
|b 0
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)138244
|a Forschungszentrum Jülich
|b 2
|k FZJ
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)131794
|a Forschungszentrum Jülich
|b 3
|k FZJ
913 1 _ |0 G:(DE-HGF)POF3-573
|1 G:(DE-HGF)POF3-570
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|v Neuroimaging
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2018
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
|b MAGN RESON IMAGING : 2015
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0600
|2 StatID
|a DBCoverage
|b Ebsco Academic Search
915 _ _ |0 StatID:(DE-HGF)0030
|2 StatID
|a Peer Review
|b ASC
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)1110
|2 StatID
|a DBCoverage
|b Current Contents - Clinical Medicine
915 _ _ |0 StatID:(DE-HGF)9900
|2 StatID
|a IF < 5
920 1 _ |0 I:(DE-Juel1)INM-4-20090406
|k INM-4
|l Physik der Medizinischen Bildgebung
|x 0
920 1 _ |0 I:(DE-Juel1)INM-11-20170113
|k INM-11
|l Jara-Institut Quantum Information
|x 1
920 1 _ |0 I:(DE-82)080010_20140620
|k JARA-BRAIN
|l JARA-BRAIN
|x 2
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-11-20170113
980 _ _ |a I:(DE-82)080010_20140620
980 _ _ |a APC
980 _ _ |a UNRESTRICTED
980 1 _ |a APC


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21