001     837815
005     20210129231432.0
020 _ _ |a 978-1-4939-6404-8 (print)
020 _ _ |a 978-1-4939-6406-2 (electronic)
024 7 _ |a 10.1007/978-1-4939-6406-2_7
|2 doi
024 7 _ |a 1064-3745
|2 ISSN
024 7 _ |a 1940-6029
|2 ISSN
024 7 _ |a WOS:000400734600008
|2 WOS
037 _ _ |a FZJ-2017-06604
082 _ _ |a 570
100 1 _ |a Zimmermann, Olav
|0 P:(DE-Juel1)132307
|b 0
|e Corresponding author
|u fzj
245 _ _ |a Backbone Dihedral Angle Prediction
260 _ _ |a New York, NY
|c 2017
|b Springer New York
295 1 0 |a Prediction of Protein Secondary Structure / Zhou, Yaoqi (Editor) ; New York, NY : Springer New York, 2017, Chapter 7 ; ISSN: 1064-3745=1940-6029 ; ISBN: 978-1-4939-6404-8=978-1-4939-6406-2 ; doi:10.1007/978-1-4939-6406-2
300 _ _ |a 65 - 82
336 7 _ |a BOOK_CHAPTER
|2 ORCID
336 7 _ |a Book Section
|0 7
|2 EndNote
336 7 _ |a bookPart
|2 DRIVER
336 7 _ |a INBOOK
|2 BibTeX
336 7 _ |a Output Types/Book chapter
|2 DataCite
336 7 _ |a Contribution to a book
|b contb
|m contb
|0 PUB:(DE-HGF)7
|s 1505477831_21918
|2 PUB:(DE-HGF)
490 0 _ |a Methods in Molecular Biology
|v 1484
520 _ _ |a More than two decades of research have enabled dihedral angle predictions at an accuracy that makes them an interesting alternative or supplement to secondary structure prediction that provides detailed local structure information for every residue of a protein. The evolution of dihedral angle prediction methods is closely linked to advancements in machine learning and other relevant technologies. Consequently recent improvements in large-scale training of deep neural networks have led to the best method currently available, which achieves a mean absolute error of 19° for phi, and 30° for psi. This performance opens interesting perspectives for the application of dihedral angle prediction in the comparison, prediction, and design of protein structures.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef Book Series
773 _ _ |a 10.1007/978-1-4939-6406-2_7
909 C O |o oai:juser.fz-juelich.de:837815
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)132307
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a contb
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21