001     837852
005     20240610120729.0
024 7 _ |a 10.1021/acs.nanolett.7b01697
|2 doi
024 7 _ |a WOS:000407540300043
|2 WOS
024 7 _ |a altmetric:22219593
|2 altmetric
024 7 _ |a pmid:28707893
|2 pmid
037 _ _ |a FZJ-2017-06629
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Massabuau, Fabien C. P.
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Dislocations in AlGaN: Core Structure, Atom Segregation and Optical Properties
260 _ _ |a Washington, DC
|c 2017
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1505825981_21743
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a We conducted a comprehensive investigation of dislocations in Al0.46Ga0.54N. Using aberration-corrected scanning transmission electron microscopy and energy dispersive X-ray spectroscopy, the atomic structure and atom distribution at the dislocation core have been examined. We report that the core configuration of dislocations in AlGaN is consistent with that of other materials in the III-Nitride system. However, we observed that the dissociation of mixed-type dislocations is impeded by alloying GaN with AlN, which is confirmed by our experimental observation of Ga and Al atom segregation in the tensile and compressive parts of the dislocations, respectively. Investigation of the optical properties of the dislocations shows that the atom segregation at dislocations has no significant effect on the intensity recorded by cathodoluminescence in the vicinity of the dislocations. These results are in contrast with the case of dislocations in In0.09Ga0.91N where segregation of In and Ga atoms also occurs but results in carrier localization limiting non-radiative recombination at the dislocation. This study therefore sheds light on why InGaN-based devices are generally more resilient to dislocations than their AlGaN-based counterparts.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
700 1 _ |a Rhode, Sneha L.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Horton, Matthew K.
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Hanlon, Thomas J.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Kovacs, Andras
|0 P:(DE-Juel1)144926
|b 4
700 1 _ |a Zielinski, Marcin S.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Kappers, Menno J.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Dunin-Borkowski, Rafal
|0 P:(DE-Juel1)144121
|b 7
700 1 _ |a Humphreys, Colin J.
|0 P:(DE-HGF)0
|b 8
773 _ _ |a 10.1021/acs.nanolett.7b01697
|0 PERI:(DE-600)2048866-X
|n 8
|p 4846 - 4852
|t Nano letters
|v 17
|y 2017
|x 1530-6984
856 4 _ |u https://juser.fz-juelich.de/record/837852/files/acs.nanolett.7b01697.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837852/files/acs.nanolett.7b01697.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837852/files/acs.nanolett.7b01697.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837852/files/acs.nanolett.7b01697.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837852/files/acs.nanolett.7b01697.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837852/files/acs.nanolett.7b01697.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:837852
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)144926
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)144121
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANO LETT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NANO LETT : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21