000837853 001__ 837853
000837853 005__ 20240610120730.0
000837853 0247_ $$2doi$$a10.1103/PhysRevA.95.031802
000837853 0247_ $$2ISSN$$a0556-2791
000837853 0247_ $$2ISSN$$a1050-2947
000837853 0247_ $$2ISSN$$a1094-1622
000837853 0247_ $$2ISSN$$a2469-9926
000837853 0247_ $$2ISSN$$a2469-9934
000837853 0247_ $$2Handle$$a2128/15312
000837853 0247_ $$2WOS$$aWOS:000399199000001
000837853 0247_ $$2altmetric$$aaltmetric:6844573
000837853 037__ $$aFZJ-2017-06630
000837853 082__ $$a530
000837853 1001_ $$0P:(DE-HGF)0$$aRemez, Roei$$b0$$eCorresponding author
000837853 245__ $$aSuperoscillating electron wave functions with subdiffraction spots
000837853 260__ $$aWoodbury, NY$$bInst.$$c2017
000837853 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2017-03-22
000837853 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2017-03-01
000837853 3367_ $$2DRIVER$$aarticle
000837853 3367_ $$2DataCite$$aOutput Types/Journal article
000837853 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1505828001_21749
000837853 3367_ $$2BibTeX$$aARTICLE
000837853 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837853 3367_ $$00$$2EndNote$$aJournal Article
000837853 520__ $$aAlmost one and a half centuries ago, Abbe [Arch. Mikrosk. Anat. 9, 413 (1873)] and shortly after Lord Rayleigh [Philos. Mag. Ser. 5 8, 261 (1879)] showed that, when an optical lens is illuminated by a plane wave, a diffraction-limited spot with radius 0.61λ/sinα is obtained, where λ is the wavelength and α is the semiangle of the beam's convergence cone. However, spots with much smaller features can be obtained at the focal plane when the lens is illuminated by an appropriately structured beam. Whereas this concept is known for light beams, here, we show how to realize it for a massive-particle wave function, namely, a free electron. We experimentally demonstrate an electron central spot of radius 106 pm, which is more than two times smaller than the diffraction limit of the experimental setup used. In addition, we demonstrate that this central spot can be structured by adding orbital angular momentum to it. The resulting superoscillating vortex beam has a smaller dark core with respect to a regular vortex beam. This family of electron beams having hot spots with arbitrarily small features and tailored structures could be useful for studying electron-matter interactions with subatomic resolution.
000837853 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000837853 542__ $$2Crossref$$i2017-03-22$$uhttp://link.aps.org/licenses/aps-default-license
000837853 588__ $$aDataset connected to CrossRef
000837853 7001_ $$0P:(DE-HGF)0$$aTsur, Yuval$$b1
000837853 7001_ $$0P:(DE-HGF)0$$aLu, Peng-Han$$b2
000837853 7001_ $$0P:(DE-Juel1)157886$$aTavabi, Amir H.$$b3
000837853 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b4
000837853 7001_ $$0P:(DE-HGF)0$$aArie, Ady$$b5
000837853 77318 $$2Crossref$$3journal-article$$a10.1103/physreva.95.031802$$bAmerican Physical Society (APS)$$d2017-03-22$$n3$$p031802$$tPhysical Review A$$v95$$x2469-9926$$y2017
000837853 773__ $$0PERI:(DE-600)2844156-4$$a10.1103/PhysRevA.95.031802$$gVol. 95, no. 3, p. 031802$$n3$$p031802$$tPhysical review / A$$v95$$x2469-9926$$y2017
000837853 8564_ $$uhttps://juser.fz-juelich.de/record/837853/files/PhysRevA.95.031802.pdf$$yOpenAccess
000837853 8564_ $$uhttps://juser.fz-juelich.de/record/837853/files/PhysRevA.95.031802.gif?subformat=icon$$xicon$$yOpenAccess
000837853 8564_ $$uhttps://juser.fz-juelich.de/record/837853/files/PhysRevA.95.031802.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000837853 8564_ $$uhttps://juser.fz-juelich.de/record/837853/files/PhysRevA.95.031802.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000837853 8564_ $$uhttps://juser.fz-juelich.de/record/837853/files/PhysRevA.95.031802.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000837853 8564_ $$uhttps://juser.fz-juelich.de/record/837853/files/PhysRevA.95.031802.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000837853 909CO $$ooai:juser.fz-juelich.de:837853$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000837853 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157886$$aForschungszentrum Jülich$$b3$$kFZJ
000837853 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b4$$kFZJ
000837853 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000837853 9141_ $$y2017
000837853 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837853 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000837853 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000837853 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bPHYS REV A : 2015
000837853 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837853 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000837853 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837853 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000837853 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000837853 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000837853 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000837853 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000837853 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837853 920__ $$lyes
000837853 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000837853 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x1
000837853 9801_ $$aFullTexts
000837853 980__ $$ajournal
000837853 980__ $$aVDB
000837853 980__ $$aUNRESTRICTED
000837853 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000837853 980__ $$aI:(DE-Juel1)PGI-5-20110106
000837853 981__ $$aI:(DE-Juel1)ER-C-1-20170209
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF02956173
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1080/14786447908639684
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.336848
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.85.3966
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmeth.1291
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1364/JOSA.56.001463
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/BF02903413
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/j.1538-7305.1943.tb01306.x
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.60.1351
000837853 999C5 $$1M. Berry$$2Crossref$$oM. Berry Quantum Coherence and Reality: In Celebration of the 60th Birthday of Yakir Aharonov 1994$$tQuantum Coherence and Reality: In Celebration of the 60th Birthday of Yakir Aharonov$$y1994
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nmat3280
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1364/OE.21.013425
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1364/OPTICA.2.000472
000837853 999C5 $$1G. Yuan$$2Crossref$$oG. Yuan CLEO: QELS_Fundamental Science 2014$$tCLEO: QELS_Fundamental Science$$y2014
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.114.013902
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1364/OE.22.031212
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature09366
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature11840
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1063/1.4863564
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/ncomms10719
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ultramic.2014.04.007
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.optcom.2004.07.024
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.99.190404
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1364/JOSAA.3.001892
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1126/science.1198804
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1364/AO.18.003661
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nature08904
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1107/S0108767398006989
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/S0304-3991(97)00022-3
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ultramic.2014.10.007
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1093/jmicro/dfv014
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1016/j.ultramic.2012.01.008
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.108.074802
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/adma.201204206
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1098/rsta.2015.0438
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/lsa.2016.127
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/srep06333
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1364/OL.36.004335
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/srep01715
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/2040-8978/15/9/094008
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1002/j.1538-7305.1961.tb03976.x
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.102.173601
000837853 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1038/nnano.2012.34