000837854 001__ 837854
000837854 005__ 20240610120730.0
000837854 0247_ $$2doi$$a10.1038/srep45484
000837854 0247_ $$2Handle$$a2128/15316
000837854 0247_ $$2WOS$$aWOS:000398405600001
000837854 0247_ $$2altmetric$$aaltmetric:18477078
000837854 0247_ $$2pmid$$apmid:28358051
000837854 037__ $$aFZJ-2017-06631
000837854 082__ $$a000
000837854 1001_ $$0P:(DE-HGF)0$$aReichel, Victoria$$b0
000837854 245__ $$aSingle crystalline superstructured stable single domain magnetite nanoparticles
000837854 260__ $$aLondon$$bNature Publishing Group$$c2017
000837854 3367_ $$2DRIVER$$aarticle
000837854 3367_ $$2DataCite$$aOutput Types/Journal article
000837854 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1505830376_21748
000837854 3367_ $$2BibTeX$$aARTICLE
000837854 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837854 3367_ $$00$$2EndNote$$aJournal Article
000837854 520__ $$aMagnetite nanoparticles exhibit magnetic properties that are size and organization dependent and, for applications that rely on their magnetic state, they usually have to be monodisperse. Forming such particles, however, has remained a challenge. Here, we synthesize 40 nm particles of magnetite in the presence of polyarginine and show that they are composed of 10 nm building blocks, yet diffract like single crystals. We use both bulk magnetic measurements and magnetic induction maps recorded from individual particles using off-axis electron holography to show that each 40 nm particle typically contains a single magnetic domain. The magnetic state is therefore determined primarily by the size of the superstructure and not by the sizes of the constituent sub-units. Our results fundamentally demonstrate the structure – property relationship in a magnetic mesoparticle.
000837854 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000837854 588__ $$aDataset connected to CrossRef
000837854 7001_ $$0P:(DE-Juel1)144926$$aKovács, András$$b1
000837854 7001_ $$0P:(DE-HGF)0$$aKumari, Monika$$b2
000837854 7001_ $$0P:(DE-HGF)0$$aBereczk-Tompa, Éva$$b3
000837854 7001_ $$0P:(DE-HGF)0$$aSchneck, Emanuel$$b4
000837854 7001_ $$0P:(DE-Juel1)162274$$aDiehle, Patrick$$b5
000837854 7001_ $$0P:(DE-HGF)0$$aPósfai, Mihály$$b6
000837854 7001_ $$0P:(DE-HGF)0$$aHirt, Ann M.$$b7
000837854 7001_ $$0P:(DE-Juel1)145413$$aDuchamp, Martial$$b8
000837854 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b9
000837854 7001_ $$0P:(DE-HGF)0$$aFaivre, Damien$$b10$$eCorresponding author
000837854 773__ $$0PERI:(DE-600)2615211-3$$a10.1038/srep45484$$gVol. 7, p. 45484 -$$p45484 -$$tScientific reports$$v7$$x2045-2322$$y2017
000837854 8564_ $$uhttps://juser.fz-juelich.de/record/837854/files/srep45484.pdf$$yOpenAccess
000837854 8564_ $$uhttps://juser.fz-juelich.de/record/837854/files/srep45484.gif?subformat=icon$$xicon$$yOpenAccess
000837854 8564_ $$uhttps://juser.fz-juelich.de/record/837854/files/srep45484.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000837854 8564_ $$uhttps://juser.fz-juelich.de/record/837854/files/srep45484.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000837854 8564_ $$uhttps://juser.fz-juelich.de/record/837854/files/srep45484.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000837854 8564_ $$uhttps://juser.fz-juelich.de/record/837854/files/srep45484.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000837854 909CO $$ooai:juser.fz-juelich.de:837854$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000837854 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144926$$aForschungszentrum Jülich$$b1$$kFZJ
000837854 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)162274$$aForschungszentrum Jülich$$b5$$kFZJ
000837854 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b9$$kFZJ
000837854 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000837854 9141_ $$y2017
000837854 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837854 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000837854 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000837854 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000837854 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bSCI REP-UK : 2015
000837854 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bSCI REP-UK : 2015
000837854 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000837854 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000837854 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000837854 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837854 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837854 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000837854 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000837854 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000837854 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000837854 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837854 920__ $$lyes
000837854 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000837854 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x1
000837854 9801_ $$aFullTexts
000837854 980__ $$ajournal
000837854 980__ $$aVDB
000837854 980__ $$aUNRESTRICTED
000837854 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000837854 980__ $$aI:(DE-Juel1)PGI-5-20110106
000837854 981__ $$aI:(DE-Juel1)ER-C-1-20170209