000837856 001__ 837856
000837856 005__ 20240610120730.0
000837856 0247_ $$2doi$$a10.1016/j.ultramic.2016.08.010
000837856 0247_ $$2Handle$$a2128/15311
000837856 0247_ $$2WOS$$aWOS:000403862900008
000837856 037__ $$aFZJ-2017-06633
000837856 041__ $$aEnglish
000837856 082__ $$a570
000837856 1001_ $$0P:(DE-Juel1)159136$$aMigunov, Vadim$$b0$$eCorresponding author
000837856 245__ $$aProspects for quantitative and time-resolved double and continuous exposure off-axis electron holography
000837856 260__ $$aAmsterdam$$bElsevier Science$$c2017
000837856 3367_ $$2DRIVER$$aarticle
000837856 3367_ $$2DataCite$$aOutput Types/Journal article
000837856 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1505827343_21745
000837856 3367_ $$2BibTeX$$aARTICLE
000837856 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837856 3367_ $$00$$2EndNote$$aJournal Article
000837856 520__ $$aThe technique of double exposure electron holography, which is based on the superposition of two off-axis electron holograms, was originally introduced before the availability of digital image processing to allow differences between electron-optical phases encoded in two electron holograms to be visualised directly without the need for holographic reconstruction. Here, we review the original method and show how it can now be extended to permit quantitative studies of phase shifts that oscillate in time. We begin with a description of the theory of off-axis electron hologram formation for a time-dependent electron wave that results from the excitation of a specimen using an external stimulus with a square, sinusoidal, triangular or other temporal dependence. We refer to the more general method as continuous exposure electron holography, present preliminary experimental measurements and discuss how the technique can be used to image electrostatic potentials and magnetic fields during high frequency switching experiments.
000837856 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000837856 7001_ $$0P:(DE-Juel1)159157$$aDwyer, Christian$$b1
000837856 7001_ $$0P:(DE-Juel1)144965$$aBoothroyd, Christopher Brian$$b2
000837856 7001_ $$0P:(DE-HGF)0$$aPozzi, Giulio$$b3
000837856 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b4
000837856 773__ $$0PERI:(DE-600)1479043-9$$a10.1016/j.ultramic.2016.08.010$$p48 - 61$$tUltramicroscopy$$v178$$x0304-3991$$y2017
000837856 8564_ $$uhttps://juser.fz-juelich.de/record/837856/files/1-s2.0-S0304399116301395-main.pdf$$yOpenAccess
000837856 8564_ $$uhttps://juser.fz-juelich.de/record/837856/files/1-s2.0-S0304399116301395-main.gif?subformat=icon$$xicon$$yOpenAccess
000837856 8564_ $$uhttps://juser.fz-juelich.de/record/837856/files/1-s2.0-S0304399116301395-main.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000837856 8564_ $$uhttps://juser.fz-juelich.de/record/837856/files/1-s2.0-S0304399116301395-main.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000837856 8564_ $$uhttps://juser.fz-juelich.de/record/837856/files/1-s2.0-S0304399116301395-main.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000837856 8564_ $$uhttps://juser.fz-juelich.de/record/837856/files/1-s2.0-S0304399116301395-main.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000837856 909CO $$ooai:juser.fz-juelich.de:837856$$popen_access$$popenaire$$pdnbdelivery$$pVDB$$pdriver
000837856 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)159136$$aForschungszentrum Jülich$$b0$$kFZJ
000837856 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b4$$kFZJ
000837856 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000837856 9141_ $$y2017
000837856 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837856 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000837856 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000837856 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000837856 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bULTRAMICROSCOPY : 2015
000837856 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837856 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000837856 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837856 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000837856 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000837856 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000837856 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000837856 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000837856 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000837856 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000837856 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000837856 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837856 920__ $$lyes
000837856 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000837856 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x1
000837856 9801_ $$aFullTexts
000837856 980__ $$ajournal
000837856 980__ $$aVDB
000837856 980__ $$aUNRESTRICTED
000837856 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000837856 980__ $$aI:(DE-Juel1)PGI-5-20110106
000837856 981__ $$aI:(DE-Juel1)ER-C-1-20170209