000837857 001__ 837857
000837857 005__ 20240610120731.0
000837857 0247_ $$2doi$$a10.1051/epjap/2017160394
000837857 0247_ $$2ISSN$$a1286-0042
000837857 0247_ $$2ISSN$$a1286-0050
000837857 0247_ $$2WOS$$aWOS:000401818100003
000837857 037__ $$aFZJ-2017-06634
000837857 082__ $$a530
000837857 1001_ $$0P:(DE-Juel1)157886$$aTavabi, Amir H.$$b0
000837857 245__ $$aNew experiments with a double crystal electron interferometer
000837857 260__ $$aLes Ulis$$bEDP Sciences$$c2017
000837857 3367_ $$2DRIVER$$aarticle
000837857 3367_ $$2DataCite$$aOutput Types/Journal article
000837857 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1505827420_21750
000837857 3367_ $$2BibTeX$$aARTICLE
000837857 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837857 3367_ $$00$$2EndNote$$aJournal Article
000837857 520__ $$aRecent advances in transmission electron microscopy and specimen preparation now permit the revival of an old idea, originally pioneered by Marton, of using single crystals as amplitude division beam splitters. As a first step in the direction of realizing a three crystal electron interferometer, we present results obtained from a double crystal interferometer, in which the gap between the two crystals is under experimental control and perfect registry is obtained by using focused ion beam milling to fabricate the interferometer from a single Si crystal.
000837857 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000837857 588__ $$aDataset connected to CrossRef
000837857 7001_ $$0P:(DE-Juel1)145413$$aDuchamp, Martial$$b1$$eCorresponding author
000837857 7001_ $$0P:(DE-HGF)0$$aGrillo, Vincenzo$$b2
000837857 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b3
000837857 7001_ $$0P:(DE-HGF)0$$aPozzi, Giulio$$b4
000837857 773__ $$0PERI:(DE-600)1468654-5$$a10.1051/epjap/2017160394$$gVol. 78, no. 1, p. 10701 -$$n1$$p10701 -$$tThe @European physical journal / Applied physics$$v78$$x1286-0050$$y2017
000837857 909CO $$ooai:juser.fz-juelich.de:837857$$pVDB
000837857 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157886$$aForschungszentrum Jülich$$b0$$kFZJ
000837857 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ
000837857 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b3$$kFZJ
000837857 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000837857 9141_ $$y2017
000837857 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG
000837857 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000837857 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR PHYS J-APPL PHYS : 2015
000837857 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837857 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837857 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000837857 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837857 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837857 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000837857 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000837857 920__ $$lyes
000837857 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000837857 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x1
000837857 980__ $$ajournal
000837857 980__ $$aVDB
000837857 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000837857 980__ $$aI:(DE-Juel1)PGI-5-20110106
000837857 980__ $$aUNRESTRICTED
000837857 981__ $$aI:(DE-Juel1)ER-C-1-20170209