000837857 001__ 837857 000837857 005__ 20240610120731.0 000837857 0247_ $$2doi$$a10.1051/epjap/2017160394 000837857 0247_ $$2ISSN$$a1286-0042 000837857 0247_ $$2ISSN$$a1286-0050 000837857 0247_ $$2WOS$$aWOS:000401818100003 000837857 037__ $$aFZJ-2017-06634 000837857 082__ $$a530 000837857 1001_ $$0P:(DE-Juel1)157886$$aTavabi, Amir H.$$b0 000837857 245__ $$aNew experiments with a double crystal electron interferometer 000837857 260__ $$aLes Ulis$$bEDP Sciences$$c2017 000837857 3367_ $$2DRIVER$$aarticle 000837857 3367_ $$2DataCite$$aOutput Types/Journal article 000837857 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1505827420_21750 000837857 3367_ $$2BibTeX$$aARTICLE 000837857 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000837857 3367_ $$00$$2EndNote$$aJournal Article 000837857 520__ $$aRecent advances in transmission electron microscopy and specimen preparation now permit the revival of an old idea, originally pioneered by Marton, of using single crystals as amplitude division beam splitters. As a first step in the direction of realizing a three crystal electron interferometer, we present results obtained from a double crystal interferometer, in which the gap between the two crystals is under experimental control and perfect registry is obtained by using focused ion beam milling to fabricate the interferometer from a single Si crystal. 000837857 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0 000837857 588__ $$aDataset connected to CrossRef 000837857 7001_ $$0P:(DE-Juel1)145413$$aDuchamp, Martial$$b1$$eCorresponding author 000837857 7001_ $$0P:(DE-HGF)0$$aGrillo, Vincenzo$$b2 000837857 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal E.$$b3 000837857 7001_ $$0P:(DE-HGF)0$$aPozzi, Giulio$$b4 000837857 773__ $$0PERI:(DE-600)1468654-5$$a10.1051/epjap/2017160394$$gVol. 78, no. 1, p. 10701 -$$n1$$p10701 -$$tThe @European physical journal / Applied physics$$v78$$x1286-0050$$y2017 000837857 909CO $$ooai:juser.fz-juelich.de:837857$$pVDB 000837857 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157886$$aForschungszentrum Jülich$$b0$$kFZJ 000837857 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich$$b1$$kFZJ 000837857 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b3$$kFZJ 000837857 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0 000837857 9141_ $$y2017 000837857 915__ $$0StatID:(DE-HGF)0400$$2StatID$$aAllianz-Lizenz / DFG 000837857 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000837857 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bEUR PHYS J-APPL PHYS : 2015 000837857 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000837857 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000837857 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000837857 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000837857 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000837857 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences 000837857 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5 000837857 920__ $$lyes 000837857 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0 000837857 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x1 000837857 980__ $$ajournal 000837857 980__ $$aVDB 000837857 980__ $$aI:(DE-Juel1)ER-C-1-20170209 000837857 980__ $$aI:(DE-Juel1)PGI-5-20110106 000837857 980__ $$aUNRESTRICTED 000837857 981__ $$aI:(DE-Juel1)ER-C-1-20170209