000837858 001__ 837858
000837858 005__ 20240610120731.0
000837858 0247_ $$2doi$$a10.1038/ncomms15348
000837858 0247_ $$2Handle$$a2128/15313
000837858 0247_ $$2WOS$$aWOS:000401279300001
000837858 0247_ $$2altmetric$$aaltmetric:20926778
000837858 0247_ $$2pmid$$apmid:28504267
000837858 037__ $$aFZJ-2017-06635
000837858 082__ $$a500
000837858 1001_ $$0P:(DE-HGF)0$$aSong, Dongsheng$$b0
000837858 245__ $$aAn in-plane magnetic chiral dichroism approach for measurement of intrinsic magnetic signals using transmitted electrons
000837858 260__ $$aLondon$$bNature Publishing Group$$c2017
000837858 3367_ $$2DRIVER$$aarticle
000837858 3367_ $$2DataCite$$aOutput Types/Journal article
000837858 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1505828708_21750
000837858 3367_ $$2BibTeX$$aARTICLE
000837858 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837858 3367_ $$00$$2EndNote$$aJournal Article
000837858 520__ $$aElectron energy-loss magnetic chiral dichroism is a powerful technique that allows the local magnetic properties of materials to be measured quantitatively with close-to-atomic spatial resolution and element specificity in the transmission electron microscope. Until now, the technique has been restricted to measurements of the magnetic circular dichroism signal in the electron beam direction. However, the intrinsic magnetization directions of thin samples are often oriented in the specimen plane, especially when they are examined in magnetic-field-free conditions in the transmission electron microscope. Here, we introduce an approach that allows in-plane magnetic signals to be measured using electron magnetic chiral dichroism by selecting a specific diffraction geometry. We compare experimental results recorded from a cobalt nanoplate with simulations to demonstrate that an electron magnetic chiral dichroism signal originating from in-plane magnetization can be detected successfully.
000837858 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000837858 588__ $$aDataset connected to CrossRef
000837858 7001_ $$0P:(DE-Juel1)157886$$aTavabi, Amir H.$$b1
000837858 7001_ $$0P:(DE-HGF)0$$aLi, Zi-An$$b2
000837858 7001_ $$0P:(DE-Juel1)144926$$aKovács, András$$b3
000837858 7001_ $$0P:(DE-HGF)0$$aRusz, Ján$$b4
000837858 7001_ $$0P:(DE-HGF)0$$aHuang, Wenting$$b5
000837858 7001_ $$0P:(DE-HGF)0$$aRichter, Gunther$$b6
000837858 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b7
000837858 7001_ $$0P:(DE-HGF)0$$aZhu, Jing$$b8$$eCorresponding author
000837858 773__ $$0PERI:(DE-600)2553671-0$$a10.1038/ncomms15348$$gVol. 8, p. 15348 -$$p15348 -$$tNature Communications$$v8$$x2041-1723$$y2017
000837858 8564_ $$uhttps://juser.fz-juelich.de/record/837858/files/ncomms15348.pdf$$yOpenAccess
000837858 8564_ $$uhttps://juser.fz-juelich.de/record/837858/files/ncomms15348.gif?subformat=icon$$xicon$$yOpenAccess
000837858 8564_ $$uhttps://juser.fz-juelich.de/record/837858/files/ncomms15348.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000837858 8564_ $$uhttps://juser.fz-juelich.de/record/837858/files/ncomms15348.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000837858 8564_ $$uhttps://juser.fz-juelich.de/record/837858/files/ncomms15348.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000837858 8564_ $$uhttps://juser.fz-juelich.de/record/837858/files/ncomms15348.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000837858 909CO $$ooai:juser.fz-juelich.de:837858$$pdriver$$popen_access$$popenaire$$pdnbdelivery$$pVDB
000837858 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157886$$aForschungszentrum Jülich$$b1$$kFZJ
000837858 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144926$$aForschungszentrum Jülich$$b3$$kFZJ
000837858 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b7$$kFZJ
000837858 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000837858 9141_ $$y2017
000837858 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837858 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000837858 915__ $$0LIC:(DE-HGF)CCBY4$$2HGFVOC$$aCreative Commons Attribution CC BY 4.0
000837858 915__ $$0StatID:(DE-HGF)1040$$2StatID$$aDBCoverage$$bZoological Record
000837858 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNAT COMMUN : 2015
000837858 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNAT COMMUN : 2015
000837858 915__ $$0StatID:(DE-HGF)0501$$2StatID$$aDBCoverage$$bDOAJ Seal
000837858 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000837858 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000837858 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837858 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837858 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000837858 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000837858 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000837858 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000837858 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000837858 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000837858 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837858 920__ $$lyes
000837858 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000837858 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x1
000837858 9801_ $$aFullTexts
000837858 980__ $$ajournal
000837858 980__ $$aVDB
000837858 980__ $$aUNRESTRICTED
000837858 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000837858 980__ $$aI:(DE-Juel1)PGI-5-20110106
000837858 981__ $$aI:(DE-Juel1)ER-C-1-20170209