001     837865
005     20210129231437.0
024 7 _ |a 10.1021/acs.nanolett.7b00627
|2 doi
024 7 _ |a 1530-6984
|2 ISSN
024 7 _ |a 1530-6992
|2 ISSN
024 7 _ |a WOS:000411043500002
|2 WOS
024 7 _ |a 2128/15912
|2 Handle
024 7 _ |a altmetric:16415118
|2 altmetric
024 7 _ |a pmid:28759250
|2 pmid
037 _ _ |a FZJ-2017-06642
082 _ _ |a 540
100 1 _ |a Gehlmann, Mathias
|0 P:(DE-Juel1)161368
|b 0
|u fzj
245 _ _ |a Direct Observation of the Band Gap Transition in Atomically Thin ReS2
260 _ _ |a Washington, DC
|c 2017
|b ACS Publ.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1511166793_32653
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a ReS2 is considered as a promising candidate for novel electronic and sensor applications. The low crystal symmetry of this van der Waals compound leads to a highly anisotropic optical, vibrational, and transport behavior. However, the details of the electronic band structure of this fascinating material are still largely unexplored. We present a momentum-resolved study of the electronic structure of monolayer, bilayer, and bulk ReS2 using k-space photoemission microscopy in combination with first-principles calculations. We demonstrate that the valence electrons in bulk ReS2 are—contrary to assumptions in recent literature—significantly delocalized across the van der Waals gap. Furthermore, we directly observe the evolution of the valence band dispersion as a function of the number of layers, revealing the transition from an indirect band gap in bulk ReS2 to a direct gap in the bilayer and the monolayer. We also find a significantly increased effective hole mass in single-layer crystals. Our results establish bilayer ReS2 as an advantageous building block for two-dimensional devices and van der Waals heterostructures.
536 _ _ |a 142 - Controlling Spin-Based Phenomena (POF3-142)
|0 G:(DE-HGF)POF3-142
|c POF3-142
|f POF III
|x 0
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Aguilera, Irene
|0 P:(DE-Juel1)145750
|b 1
|u fzj
700 1 _ |a Bihlmayer, Gustav
|0 P:(DE-Juel1)130545
|b 2
|u fzj
700 1 _ |a Nemšák, Slavomír
|0 P:(DE-Juel1)164137
|b 3
700 1 _ |a Nagler, Philipp
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Gospodarič, Pika
|0 P:(DE-Juel1)167375
|b 5
|u fzj
700 1 _ |a Zamborlini, Giovanni
|0 P:(DE-Juel1)162281
|b 6
|u fzj
700 1 _ |a Eschbach, Markus
|0 P:(DE-Juel1)145534
|b 7
700 1 _ |a Feyer, Vitaliy
|0 P:(DE-Juel1)145012
|b 8
|u fzj
700 1 _ |a Kronast, Florian
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Młyńczak, Ewa
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Korn, Tobias
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Plucinski, Lukasz
|0 P:(DE-Juel1)130895
|b 12
|e Corresponding author
|u fzj
700 1 _ |a Schüller, Christian
|0 P:(DE-HGF)0
|b 13
700 1 _ |a Blügel, Stefan
|0 P:(DE-Juel1)130548
|b 14
|u fzj
700 1 _ |a Schneider, Claus M.
|0 P:(DE-Juel1)130948
|b 15
|u fzj
773 _ _ |a 10.1021/acs.nanolett.7b00627
|g Vol. 17, no. 9, p. 5187 - 5192
|0 PERI:(DE-600)2048866-X
|n 9
|p 5187 - 5192
|t Nano letters
|v 17
|y 2017
|x 1530-6992
856 4 _ |u https://juser.fz-juelich.de/record/837865/files/acs.nanolett.7b00627.pdf
|y Restricted
856 4 _ |y OpenAccess
|u https://juser.fz-juelich.de/record/837865/files/1702.04176v1.pdf
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/837865/files/acs.nanolett.7b00627.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/837865/files/acs.nanolett.7b00627.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/837865/files/acs.nanolett.7b00627.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/837865/files/acs.nanolett.7b00627.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/837865/files/acs.nanolett.7b00627.pdf?subformat=pdfa
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837865/files/1702.04176v1.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/837865/files/1702.04176v1.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/837865/files/1702.04176v1.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/837865/files/1702.04176v1.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/837865/files/1702.04176v1.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:837865
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)161368
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145750
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)130545
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)164137
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)167375
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)162281
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)145012
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)130895
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 14
|6 P:(DE-Juel1)130548
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 15
|6 P:(DE-Juel1)130948
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-142
|2 G:(DE-HGF)POF3-100
|v Controlling Spin-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b NANO LETT : 2015
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b NANO LETT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |0 I:(DE-Juel1)IAS-1-20090406
|k IAS-1
|l Quanten-Theorie der Materialien
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-1-20110106
|k PGI-1
|l Quanten-Theorie der Materialien
|x 1
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l JARA-FIT
|x 2
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 3
920 1 _ |0 I:(DE-Juel1)PGI-6-20110106
|k PGI-6
|l Elektronische Eigenschaften
|x 4
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IAS-1-20090406
980 _ _ |a I:(DE-Juel1)PGI-1-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a I:(DE-Juel1)PGI-6-20110106
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21