001     837873
005     20240711085558.0
024 7 _ |a 10.1016/j.memsci.2017.09.011
|2 doi
024 7 _ |a 0376-7388
|2 ISSN
024 7 _ |a 1873-3123
|2 ISSN
024 7 _ |a 2128/15334
|2 Handle
024 7 _ |a WOS:000412350900030
|2 WOS
037 _ _ |a FZJ-2017-06644
082 _ _ |a 570
100 1 _ |a Ramasamy, M.
|0 P:(DE-Juel1)159404
|b 0
|u fzj
245 _ _ |a Structural and chemical stability of high performance Ce 0.8 Gd 0.2 O 2-δ - FeCo 2 O 4 dual phase oxygen transport membranes
260 _ _ |a New York, NY [u.a.]
|c 2017
|b Elsevier
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1506337418_17752
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Ceramic oxide membranes are widely being researched for Carbon Capture and Storage/Utilization sector applications. Foreseen applications of these membranes are oxygen generation for oxyfuel combustion in e.g. power plants, glass-, cement- or steel production. Major drawback with Mixed Ionic and Electronic Conducting (MIEC) perovskite structure membranes is their limited long term stability at high temperatures in aggressive atmospheres. Dual phase composite membranes have been reported to excel overcoming this drawback. In addition to performance evaluation, Ce0.8Gd0.2O2-δ – FeCo2O4 (CGO-FCO) membranes were subjected to stability test in flue gas conditions closely mimicking industrial flue gas atmosphere. The dual phase composites are investigated for their phase stability at the operating temperature of 850 °C in a gradient of oxygen chemical potential. The composites were also exposed to a series of gas mixtures over a period of time at their operating temperature to test for the chemical stability. CGO-FCO membranes are identified to possess chemical stability in gas mixtures of CO2, SO2 along with oxygen over a period of 200 h at 850 °C under oxygen partial pressure gradient.
536 _ _ |a 113 - Methods and Concepts for Material Development (POF3-113)
|0 G:(DE-HGF)POF3-113
|c POF3-113
|f POF III
|x 0
536 _ _ |a GREEN-CC - Graded Membranes for Energy Efficient New Generation Carbon Capture Process (608524)
|0 G:(EU-Grant)608524
|c 608524
|f FP7-ENERGY-2013-1
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Persoon, E. S.
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Baumann, S.
|0 P:(DE-Juel1)129587
|b 2
|e Corresponding author
|u fzj
700 1 _ |a Schroeder, M.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Schulze-Küppers, F.
|0 P:(DE-Juel1)129660
|b 4
|u fzj
700 1 _ |a Görtz, D.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Bhave, R.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Bram, M.
|0 P:(DE-Juel1)129591
|b 7
|u fzj
700 1 _ |a Meulenberg, W. A.
|0 P:(DE-Juel1)129637
|b 8
|u fzj
773 _ _ |a 10.1016/j.memsci.2017.09.011
|g p. S037673881730529X
|0 PERI:(DE-600)1491419-0
|p 278-286
|t Journal of membrane science
|v 544
|y 2017
|x 0376-7388
856 4 _ |u https://juser.fz-juelich.de/record/837873/files/1-s2.0-S037673881730529X-main.pdf
|y Restricted
856 4 _ |y Published on 2017-09-25. Available in OpenAccess from 2018-09-25.
|u https://juser.fz-juelich.de/record/837873/files/JMS%20-%20stability%20of%20CGO-FCO_R2.pdf
856 4 _ |y Published on 2017-09-25. Available in OpenAccess from 2018-09-25.
|x icon
|u https://juser.fz-juelich.de/record/837873/files/JMS%20-%20stability%20of%20CGO-FCO_R2.gif?subformat=icon
856 4 _ |y Published on 2017-09-25. Available in OpenAccess from 2018-09-25.
|x icon-1440
|u https://juser.fz-juelich.de/record/837873/files/JMS%20-%20stability%20of%20CGO-FCO_R2.jpg?subformat=icon-1440
856 4 _ |y Published on 2017-09-25. Available in OpenAccess from 2018-09-25.
|x icon-180
|u https://juser.fz-juelich.de/record/837873/files/JMS%20-%20stability%20of%20CGO-FCO_R2.jpg?subformat=icon-180
856 4 _ |y Published on 2017-09-25. Available in OpenAccess from 2018-09-25.
|x icon-640
|u https://juser.fz-juelich.de/record/837873/files/JMS%20-%20stability%20of%20CGO-FCO_R2.jpg?subformat=icon-640
856 4 _ |y Published on 2017-09-25. Available in OpenAccess from 2018-09-25.
|x pdfa
|u https://juser.fz-juelich.de/record/837873/files/JMS%20-%20stability%20of%20CGO-FCO_R2.pdf?subformat=pdfa
856 4 _ |x icon
|u https://juser.fz-juelich.de/record/837873/files/1-s2.0-S037673881730529X-main.gif?subformat=icon
|y Restricted
856 4 _ |x icon-1440
|u https://juser.fz-juelich.de/record/837873/files/1-s2.0-S037673881730529X-main.jpg?subformat=icon-1440
|y Restricted
856 4 _ |x icon-180
|u https://juser.fz-juelich.de/record/837873/files/1-s2.0-S037673881730529X-main.jpg?subformat=icon-180
|y Restricted
856 4 _ |x icon-640
|u https://juser.fz-juelich.de/record/837873/files/1-s2.0-S037673881730529X-main.jpg?subformat=icon-640
|y Restricted
856 4 _ |x pdfa
|u https://juser.fz-juelich.de/record/837873/files/1-s2.0-S037673881730529X-main.pdf?subformat=pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:837873
|p openaire
|p driver
|p open_access
|p VDB
|p ec_fundedresources
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)159404
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)129587
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129660
910 1 _ |a RWTH Aachen
|0 I:(DE-588b)36225-6
|k RWTH
|b 5
|6 P:(DE-Juel1)171866
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)129591
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)129637
913 1 _ |a DE-HGF
|l Energieeffizienz, Materialien und Ressourcen
|1 G:(DE-HGF)POF3-110
|0 G:(DE-HGF)POF3-113
|2 G:(DE-HGF)POF3-100
|v Methods and Concepts for Material Development
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J MEMBRANE SCI : 2015
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b J MEMBRANE SCI : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l no
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21