000837875 001__ 837875
000837875 005__ 20240610120408.0
000837875 0247_ $$2doi$$a10.1021/acs.nanolett.6b04280
000837875 0247_ $$2ISSN$$a1530-6984
000837875 0247_ $$2ISSN$$a1530-6992
000837875 0247_ $$2pmid$$apmid:28125235
000837875 0247_ $$2WOS$$aWOS:000396185800012
000837875 037__ $$aFZJ-2017-06646
000837875 041__ $$aEnglish
000837875 082__ $$a540
000837875 1001_ $$0P:(DE-HGF)0$$aLi, Zi-An$$b0$$eCorresponding author
000837875 245__ $$aMagnetic Skyrmion Formation at Lattice Defects and Grain Boundaries Studied by Quantitative Off-Axis Electron Holography
000837875 260__ $$aWashington, DC$$bACS Publ.$$c2017
000837875 3367_ $$2DRIVER$$aarticle
000837875 3367_ $$2DataCite$$aOutput Types/Journal article
000837875 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1505914452_17346
000837875 3367_ $$2BibTeX$$aARTICLE
000837875 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837875 3367_ $$00$$2EndNote$$aJournal Article
000837875 520__ $$aWe use in situ Lorentz microscopy and off-axis electron holography to investigate the formation and characteristics of skyrmion lattice defects and their relationship to the underlying crystallographic structure of a B20 FeGe thin film. We obtain experimental measurements of spin configurations at grain boundaries, which reveal inversions of crystallographic and magnetic chirality across adjacent grains, resulting in the formation of interface spin stripes at the grain boundaries. In the absence of material defects, we observe that skyrmions lattices possess dislocations and domain boundaries, in analogy to atomic crystals. Moreover, the distorted skyrmions can flexibly change their size and shape to accommodate local geometry, especially at sites of dislocations in the skyrmion lattice. Our findings provide a detailed understanding of the elasticity of topologically protected skyrmions and their correlation with underlying material defects.
000837875 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000837875 588__ $$aDataset connected to CrossRef
000837875 7001_ $$0P:(DE-Juel1)165965$$aZheng, Fengshan$$b1
000837875 7001_ $$0P:(DE-Juel1)157886$$aTavabi, Amir Hossein$$b2
000837875 7001_ $$0P:(DE-Juel1)157760$$aCaron, Jan$$b3
000837875 7001_ $$0P:(DE-HGF)0$$aJin, Chiming$$b4
000837875 7001_ $$0P:(DE-HGF)0$$aDu, Haifeng$$b5
000837875 7001_ $$0P:(DE-Juel1)144926$$aKovacs, Andras$$b6
000837875 7001_ $$0P:(DE-HGF)0$$aTian, Mingliang$$b7
000837875 7001_ $$0P:(DE-HGF)0$$aFarle, Michael$$b8
000837875 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b9
000837875 773__ $$0PERI:(DE-600)2048866-X$$a10.1021/acs.nanolett.6b04280$$gVol. 17, no. 3, p. 1395 - 1401$$n3$$p1395 - 1401$$tNano letters$$v17$$x1530-6984$$y2017
000837875 8564_ $$uhttps://juser.fz-juelich.de/record/837875/files/acs.nanolett.6b04280.pdf$$yRestricted
000837875 8564_ $$uhttps://juser.fz-juelich.de/record/837875/files/acs.nanolett.6b04280.gif?subformat=icon$$xicon$$yRestricted
000837875 8564_ $$uhttps://juser.fz-juelich.de/record/837875/files/acs.nanolett.6b04280.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000837875 8564_ $$uhttps://juser.fz-juelich.de/record/837875/files/acs.nanolett.6b04280.jpg?subformat=icon-180$$xicon-180$$yRestricted
000837875 8564_ $$uhttps://juser.fz-juelich.de/record/837875/files/acs.nanolett.6b04280.jpg?subformat=icon-640$$xicon-640$$yRestricted
000837875 8564_ $$uhttps://juser.fz-juelich.de/record/837875/files/acs.nanolett.6b04280.pdf?subformat=pdfa$$xpdfa$$yRestricted
000837875 909CO $$ooai:juser.fz-juelich.de:837875$$pVDB
000837875 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837875 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000837875 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000837875 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bNANO LETT : 2015
000837875 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000837875 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000837875 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837875 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000837875 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837875 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837875 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000837875 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bNANO LETT : 2015
000837875 9141_ $$y2017
000837875 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)165965$$aForschungszentrum Jülich$$b1$$kFZJ
000837875 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157886$$aForschungszentrum Jülich$$b2$$kFZJ
000837875 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157760$$aForschungszentrum Jülich$$b3$$kFZJ
000837875 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144926$$aForschungszentrum Jülich$$b6$$kFZJ
000837875 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b9$$kFZJ
000837875 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000837875 920__ $$lyes
000837875 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000837875 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x1
000837875 980__ $$ajournal
000837875 980__ $$aVDB
000837875 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000837875 980__ $$aI:(DE-Juel1)PGI-5-20110106
000837875 980__ $$aUNRESTRICTED
000837875 981__ $$aI:(DE-Juel1)ER-C-1-20170209