000837876 001__ 837876
000837876 005__ 20240610120732.0
000837876 0247_ $$2doi$$a10.1063/1.4977879
000837876 0247_ $$2ISSN$$a0003-6951
000837876 0247_ $$2ISSN$$a1077-3118
000837876 0247_ $$2WOS$$aWOS:000397871600056
000837876 0247_ $$2Handle$$a2128/16963
000837876 0247_ $$2altmetric$$aaltmetric:26496464
000837876 037__ $$aFZJ-2017-06647
000837876 041__ $$aEnglish
000837876 082__ $$a530
000837876 1001_ $$0P:(DE-HGF)0$$aMafakheri, E.$$b0
000837876 245__ $$aRealization of electron vortices with large orbital angular momentum using miniature holograms fabricated by electron beam lithography
000837876 260__ $$aMelville, NY$$bAmerican Inst. of Physics$$c2017
000837876 3367_ $$2DRIVER$$aarticle
000837876 3367_ $$2DataCite$$aOutput Types/Journal article
000837876 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1505914680_17348
000837876 3367_ $$2BibTeX$$aARTICLE
000837876 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837876 3367_ $$00$$2EndNote$$aJournal Article
000837876 520__ $$aFree electron beams that carry high values of orbital angular momentum (OAM) possess large magnetic moments along the propagation direction. This makes them an ideal probe for measuring the electronic and magnetic properties of materials, as well as for fundamental experiments in magnetism. However, their generation requires the use of complex diffractive elements, which usually take the form of nano-fabricated holograms. Here, we show how the limitations of the current fabrication of such holograms can be overcome by using electron beam lithography. We demonstrate experimentally the realization of an electron vortex beam with the largest OAM value that has yet been reported to the first diffraction order (L = 1000 ℏ), paving the way for even more demanding demonstrations and applications of electron beam shaping.
000837876 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000837876 588__ $$aDataset connected to CrossRef
000837876 7001_ $$0P:(DE-Juel1)157886$$aTavabi, Amir Hossein$$b1
000837876 7001_ $$0P:(DE-Juel1)167381$$aLu, Penghan$$b2
000837876 7001_ $$0P:(DE-HGF)0$$aBalboni, R.$$b3
000837876 7001_ $$0P:(DE-HGF)0$$aVenturi, F.$$b4
000837876 7001_ $$0P:(DE-HGF)0$$aMenozzi, C.$$b5
000837876 7001_ $$0P:(DE-HGF)0$$aGazzadi, G. C.$$b6
000837876 7001_ $$0P:(DE-HGF)0$$aFrabboni, S.$$b7
000837876 7001_ $$0P:(DE-HGF)0$$aSit, A.$$b8
000837876 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b9
000837876 7001_ $$0P:(DE-HGF)0$$aKarimi, E.$$b10
000837876 7001_ $$0P:(DE-HGF)0$$aGrillo, V.$$b11$$eCorresponding author
000837876 773__ $$0PERI:(DE-600)1469436-0$$a10.1063/1.4977879$$gVol. 110, no. 9, p. 093113 -$$n9$$p093113-1$$tApplied physics letters$$v110$$x0003-6951$$y2017
000837876 8564_ $$uhttps://juser.fz-juelich.de/record/837876/files/1.4977879-2.pdf$$yPublished on 2017-03-03. Available in OpenAccess from 2018-03-03.
000837876 8564_ $$uhttps://juser.fz-juelich.de/record/837876/files/1.4977879-2.gif?subformat=icon$$xicon$$yPublished on 2017-03-03. Available in OpenAccess from 2018-03-03.
000837876 8564_ $$uhttps://juser.fz-juelich.de/record/837876/files/1.4977879-2.jpg?subformat=icon-180$$xicon-180$$yPublished on 2017-03-03. Available in OpenAccess from 2018-03-03.
000837876 8564_ $$uhttps://juser.fz-juelich.de/record/837876/files/1.4977879-2.jpg?subformat=icon-700$$xicon-700$$yPublished on 2017-03-03. Available in OpenAccess from 2018-03-03.
000837876 8564_ $$uhttps://juser.fz-juelich.de/record/837876/files/1.4977879-2.pdf?subformat=pdfa$$xpdfa$$yPublished on 2017-03-03. Available in OpenAccess from 2018-03-03.
000837876 909CO $$ooai:juser.fz-juelich.de:837876$$popenaire$$pdnbdelivery$$pdriver$$pVDB$$popen_access
000837876 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)157886$$aForschungszentrum Jülich$$b1$$kFZJ
000837876 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)167381$$aForschungszentrum Jülich$$b2$$kFZJ
000837876 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b9$$kFZJ
000837876 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000837876 9141_ $$y2017
000837876 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837876 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000837876 915__ $$0StatID:(DE-HGF)0530$$2StatID$$aEmbargoed OpenAccess
000837876 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bAPPL PHYS LETT : 2015
000837876 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837876 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000837876 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837876 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000837876 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000837876 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000837876 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000837876 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000837876 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837876 920__ $$lyes
000837876 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000837876 9201_ $$0I:(DE-Juel1)PGI-5-20110106$$kPGI-5$$lMikrostrukturforschung$$x1
000837876 9801_ $$aFullTexts
000837876 980__ $$ajournal
000837876 980__ $$aVDB
000837876 980__ $$aUNRESTRICTED
000837876 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000837876 980__ $$aI:(DE-Juel1)PGI-5-20110106
000837876 981__ $$aI:(DE-Juel1)ER-C-1-20170209