001     837876
005     20240610120732.0
024 7 _ |a 10.1063/1.4977879
|2 doi
024 7 _ |a 0003-6951
|2 ISSN
024 7 _ |a 1077-3118
|2 ISSN
024 7 _ |a WOS:000397871600056
|2 WOS
024 7 _ |a 2128/16963
|2 Handle
024 7 _ |a altmetric:26496464
|2 altmetric
037 _ _ |a FZJ-2017-06647
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Mafakheri, E.
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Realization of electron vortices with large orbital angular momentum using miniature holograms fabricated by electron beam lithography
260 _ _ |a Melville, NY
|c 2017
|b American Inst. of Physics
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1505914680_17348
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Free electron beams that carry high values of orbital angular momentum (OAM) possess large magnetic moments along the propagation direction. This makes them an ideal probe for measuring the electronic and magnetic properties of materials, as well as for fundamental experiments in magnetism. However, their generation requires the use of complex diffractive elements, which usually take the form of nano-fabricated holograms. Here, we show how the limitations of the current fabrication of such holograms can be overcome by using electron beam lithography. We demonstrate experimentally the realization of an electron vortex beam with the largest OAM value that has yet been reported to the first diffraction order (L = 1000 ℏ), paving the way for even more demanding demonstrations and applications of electron beam shaping.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Tavabi, Amir Hossein
|0 P:(DE-Juel1)157886
|b 1
700 1 _ |a Lu, Penghan
|0 P:(DE-Juel1)167381
|b 2
700 1 _ |a Balboni, R.
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Venturi, F.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Menozzi, C.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Gazzadi, G. C.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Frabboni, S.
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Sit, A.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Dunin-Borkowski, Rafal
|0 P:(DE-Juel1)144121
|b 9
700 1 _ |a Karimi, E.
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Grillo, V.
|0 P:(DE-HGF)0
|b 11
|e Corresponding author
773 _ _ |a 10.1063/1.4977879
|g Vol. 110, no. 9, p. 093113 -
|0 PERI:(DE-600)1469436-0
|n 9
|p 093113-1
|t Applied physics letters
|v 110
|y 2017
|x 0003-6951
856 4 _ |y Published on 2017-03-03. Available in OpenAccess from 2018-03-03.
|u https://juser.fz-juelich.de/record/837876/files/1.4977879-2.pdf
856 4 _ |y Published on 2017-03-03. Available in OpenAccess from 2018-03-03.
|x icon
|u https://juser.fz-juelich.de/record/837876/files/1.4977879-2.gif?subformat=icon
856 4 _ |y Published on 2017-03-03. Available in OpenAccess from 2018-03-03.
|x icon-180
|u https://juser.fz-juelich.de/record/837876/files/1.4977879-2.jpg?subformat=icon-180
856 4 _ |y Published on 2017-03-03. Available in OpenAccess from 2018-03-03.
|x icon-700
|u https://juser.fz-juelich.de/record/837876/files/1.4977879-2.jpg?subformat=icon-700
856 4 _ |y Published on 2017-03-03. Available in OpenAccess from 2018-03-03.
|x pdfa
|u https://juser.fz-juelich.de/record/837876/files/1.4977879-2.pdf?subformat=pdfa
909 C O |o oai:juser.fz-juelich.de:837876
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)157886
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)167381
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)144121
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Embargoed OpenAccess
|0 StatID:(DE-HGF)0530
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b APPL PHYS LETT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
920 1 _ |0 I:(DE-Juel1)PGI-5-20110106
|k PGI-5
|l Mikrostrukturforschung
|x 1
980 1 _ |a FullTexts
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a UNRESTRICTED
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a I:(DE-Juel1)PGI-5-20110106
981 _ _ |a I:(DE-Juel1)ER-C-1-20170209


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21