000837915 001__ 837915
000837915 005__ 20210129231443.0
000837915 0247_ $$2doi$$a10.1021/acscatal.7b01954
000837915 0247_ $$2WOS$$aWOS:000407309100061
000837915 0247_ $$2altmetric$$aaltmetric:21958354
000837915 037__ $$aFZJ-2017-06685
000837915 041__ $$aEnglish
000837915 082__ $$a540
000837915 1001_ $$0P:(DE-HGF)0$$aXu, Junyuan$$b0
000837915 245__ $$aInterface Engineering in Nanostructured Nickel Phosphide for Efficient and Stable Water Oxidation
000837915 260__ $$aWashington, DC$$bACS$$c2017
000837915 3367_ $$2DRIVER$$aarticle
000837915 3367_ $$2DataCite$$aOutput Types/Journal article
000837915 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1506002245_12252
000837915 3367_ $$2BibTeX$$aARTICLE
000837915 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837915 3367_ $$00$$2EndNote$$aJournal Article
000837915 520__ $$aAn approach to significantly enhance the performance of the cost-effective nickel phosphide catalyst for electrochemical water oxidation has been developed via interfacing with Mg oxide-hydroxide. We have synthesized Ni2P nanoparticles anchored on Mg2O(OH)2-like phase supported on carbon paper. During the oxygen evolution reaction, the well-defined Ni2P nanoparticles serve as precursors for the immediate formation of active and stable nanostructured nickel hydroxide catalyst. As the anode for the oxygen evolution reaction in an alkaline electrolyte, the electrode shows a modest Tafel slope of 48 mV dec–1 and a large turnover frequency of 0.05 s–1 at an overpotential of 0.4 V. Microstructure and composition studies of the catalyst suggest that interfacial strain between Mg- and Ni-containing phases is responsible for high catalytic activity. A significant increase in catalytic activity upon the combination of magnesium compound and transition-metal phosphide suggests an interesting strategy for the controlled and reproducible preparation of active Earth-abundant oxygen-evolving catalysts.
000837915 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000837915 7001_ $$0P:(DE-Juel1)145420$$aWei, Xiankui$$b1
000837915 7001_ $$0P:(DE-HGF)0$$aCosta, Jose Diogo$$b2
000837915 7001_ $$0P:(DE-HGF)0$$aLado, Jose Luis$$b3
000837915 7001_ $$0P:(DE-HGF)0$$aOwens - Baird, Bryan$$b4
000837915 7001_ $$0P:(DE-HGF)0$$aGoncalves, Liliana P. L.$$b5
000837915 7001_ $$0P:(DE-HGF)0$$aFernandes, Soraia P. S.$$b6
000837915 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b7
000837915 7001_ $$0P:(DE-HGF)0$$aPetrovykh, Dmitri Y.$$b8
000837915 7001_ $$0P:(DE-Juel1)144121$$aDunin-Borkowski, Rafal$$b9
000837915 7001_ $$0P:(DE-HGF)0$$aKovnir, Kiri$$b10
000837915 7001_ $$0P:(DE-HGF)0$$aKolen`ko, Yury V.$$b11$$eCorresponding author
000837915 773__ $$0PERI:(DE-600)2584887-2$$a10.1021/acscatal.7b01954$$n8$$p5450 - 5455$$tACS catalysis$$v7$$x2155-5435$$y2017
000837915 8564_ $$uhttps://juser.fz-juelich.de/record/837915/files/acscatal.7b01954.pdf$$yRestricted
000837915 8564_ $$uhttps://juser.fz-juelich.de/record/837915/files/acscatal.7b01954.gif?subformat=icon$$xicon$$yRestricted
000837915 8564_ $$uhttps://juser.fz-juelich.de/record/837915/files/acscatal.7b01954.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000837915 8564_ $$uhttps://juser.fz-juelich.de/record/837915/files/acscatal.7b01954.jpg?subformat=icon-180$$xicon-180$$yRestricted
000837915 8564_ $$uhttps://juser.fz-juelich.de/record/837915/files/acscatal.7b01954.jpg?subformat=icon-640$$xicon-640$$yRestricted
000837915 8564_ $$uhttps://juser.fz-juelich.de/record/837915/files/acscatal.7b01954.pdf?subformat=pdfa$$xpdfa$$yRestricted
000837915 909CO $$ooai:juser.fz-juelich.de:837915$$pVDB
000837915 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145420$$aForschungszentrum Jülich$$b1$$kFZJ
000837915 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b7$$kFZJ
000837915 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144121$$aForschungszentrum Jülich$$b9$$kFZJ
000837915 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000837915 9141_ $$y2017
000837915 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS CATAL : 2015
000837915 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837915 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000837915 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000837915 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837915 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837915 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837915 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000837915 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS CATAL : 2015
000837915 920__ $$lyes
000837915 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000837915 980__ $$ajournal
000837915 980__ $$aVDB
000837915 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000837915 980__ $$aUNRESTRICTED