001     837915
005     20210129231443.0
024 7 _ |a 10.1021/acscatal.7b01954
|2 doi
024 7 _ |a WOS:000407309100061
|2 WOS
024 7 _ |a altmetric:21958354
|2 altmetric
037 _ _ |a FZJ-2017-06685
041 _ _ |a English
082 _ _ |a 540
100 1 _ |a Xu, Junyuan
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Interface Engineering in Nanostructured Nickel Phosphide for Efficient and Stable Water Oxidation
260 _ _ |a Washington, DC
|c 2017
|b ACS
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1506002245_12252
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a An approach to significantly enhance the performance of the cost-effective nickel phosphide catalyst for electrochemical water oxidation has been developed via interfacing with Mg oxide-hydroxide. We have synthesized Ni2P nanoparticles anchored on Mg2O(OH)2-like phase supported on carbon paper. During the oxygen evolution reaction, the well-defined Ni2P nanoparticles serve as precursors for the immediate formation of active and stable nanostructured nickel hydroxide catalyst. As the anode for the oxygen evolution reaction in an alkaline electrolyte, the electrode shows a modest Tafel slope of 48 mV dec–1 and a large turnover frequency of 0.05 s–1 at an overpotential of 0.4 V. Microstructure and composition studies of the catalyst suggest that interfacial strain between Mg- and Ni-containing phases is responsible for high catalytic activity. A significant increase in catalytic activity upon the combination of magnesium compound and transition-metal phosphide suggests an interesting strategy for the controlled and reproducible preparation of active Earth-abundant oxygen-evolving catalysts.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
700 1 _ |a Wei, Xiankui
|0 P:(DE-Juel1)145420
|b 1
700 1 _ |a Costa, Jose Diogo
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Lado, Jose Luis
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Owens - Baird, Bryan
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Goncalves, Liliana P. L.
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Fernandes, Soraia P. S.
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Heggen, Marc
|0 P:(DE-Juel1)130695
|b 7
700 1 _ |a Petrovykh, Dmitri Y.
|0 P:(DE-HGF)0
|b 8
700 1 _ |a Dunin-Borkowski, Rafal
|0 P:(DE-Juel1)144121
|b 9
700 1 _ |a Kovnir, Kiri
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Kolen`ko, Yury V.
|0 P:(DE-HGF)0
|b 11
|e Corresponding author
773 _ _ |a 10.1021/acscatal.7b01954
|0 PERI:(DE-600)2584887-2
|n 8
|p 5450 - 5455
|t ACS catalysis
|v 7
|y 2017
|x 2155-5435
856 4 _ |u https://juser.fz-juelich.de/record/837915/files/acscatal.7b01954.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837915/files/acscatal.7b01954.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837915/files/acscatal.7b01954.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837915/files/acscatal.7b01954.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837915/files/acscatal.7b01954.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837915/files/acscatal.7b01954.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:837915
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)145420
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 7
|6 P:(DE-Juel1)130695
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)144121
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS CATAL : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACS CATAL : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21