000837916 001__ 837916
000837916 005__ 20210129231443.0
000837916 0247_ $$2doi$$a10.1021/acscatal.7b00629
000837916 0247_ $$2Handle$$a2128/15328
000837916 0247_ $$2WOS$$aWOS:000402851600014
000837916 0247_ $$2altmetric$$aaltmetric:20011624
000837916 037__ $$aFZJ-2017-06686
000837916 041__ $$aEnglish
000837916 082__ $$a540
000837916 1001_ $$0P:(DE-HGF)0$$aHou, Tingting$$b0
000837916 245__ $$aYin and Yang Dual Characters of CuOx Clusters for C-C Band Oxidation Driven by Visible Light
000837916 260__ $$aWashington, DC$$bACS$$c2017
000837916 3367_ $$2DRIVER$$aarticle
000837916 3367_ $$2DataCite$$aOutput Types/Journal article
000837916 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1506320154_17751
000837916 3367_ $$2BibTeX$$aARTICLE
000837916 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837916 3367_ $$00$$2EndNote$$aJournal Article
000837916 520__ $$aSelective cleavage of C–C bonds is pursued as a useful chemical transformation method in biomass utilization. Herein, we report a hybrid CuOx/ceria/anatase nanotube catalyst in the selective oxidation of C–C bonds under visible light irradiation. Using the lignin β-1 model as a substrate offers 96% yields of benzaldehydes. Characterization results by high angle annular dark field scanning transmission electron microscopy (HAADF-STEM) and energy-dispersive X-ray spectroscopy element (EDX) mapping reveal that CuOx clusters are highly dispersed on the exposed anatase surface as well as on the nanosized ceria domains. In-depth investigations by Raman and ultraviolet visible diffuse reflectance spectra (UV−vis DRS), together with density functional theory (DFT) calculations, further verify that the CuOx clusters present on the ceria domains increase the concentration of surface defects (Ce3+ ions and oxygen vacancies) and accordingly improve the photocatalytic activity (Yang character); the CuOx clusters decorating on anatase suppress the side reaction (oxy-dehydrogenation without C–C bond cleavage) because of an upward shift in the valence band (VB) edge of anatase (Yin character). Mechanism investigation indicates hydrogen abstraction from β-carbon by photogenerated holes is a vital step in the conversion.
000837916 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000837916 7001_ $$0P:(DE-HGF)0$$aLuo, Nagchao$$b1
000837916 7001_ $$0P:(DE-HGF)0$$aLi, Hongji$$b2
000837916 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b3
000837916 7001_ $$0P:(DE-HGF)0$$aLu, Jianmin$$b4
000837916 7001_ $$0P:(DE-HGF)0$$aWang, Yehong$$b5
000837916 7001_ $$0P:(DE-HGF)0$$aWang, Feng$$b6$$eCorresponding author
000837916 773__ $$0PERI:(DE-600)2584887-2$$a10.1021/acscatal.7b00629$$n6$$p3850 - 3859$$tACS catalysis$$v7$$x2155-5435$$y2017
000837916 8564_ $$uhttps://juser.fz-juelich.de/record/837916/files/acscatal.7b00629.pdf$$yOpenAccess
000837916 8564_ $$uhttps://juser.fz-juelich.de/record/837916/files/acscatal.7b00629.gif?subformat=icon$$xicon$$yOpenAccess
000837916 8564_ $$uhttps://juser.fz-juelich.de/record/837916/files/acscatal.7b00629.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000837916 8564_ $$uhttps://juser.fz-juelich.de/record/837916/files/acscatal.7b00629.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000837916 8564_ $$uhttps://juser.fz-juelich.de/record/837916/files/acscatal.7b00629.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000837916 8564_ $$uhttps://juser.fz-juelich.de/record/837916/files/acscatal.7b00629.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000837916 909CO $$ooai:juser.fz-juelich.de:837916$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000837916 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b3$$kFZJ
000837916 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000837916 9141_ $$y2017
000837916 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837916 915__ $$0LIC:(DE-HGF)PublisherOA$$2HGFVOC$$aFree to read
000837916 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS CATAL : 2015
000837916 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS CATAL : 2015
000837916 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837916 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837916 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000837916 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000837916 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000837916 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000837916 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837916 920__ $$lyes
000837916 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000837916 980__ $$ajournal
000837916 980__ $$aVDB
000837916 980__ $$aUNRESTRICTED
000837916 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000837916 9801_ $$aFullTexts