000837917 001__ 837917
000837917 005__ 20210129231443.0
000837917 0247_ $$2doi$$a10.1021/acscatal.7b00148
000837917 0247_ $$2WOS$$aWOS:000401054300041
000837917 037__ $$aFZJ-2017-06687
000837917 041__ $$aEnglish
000837917 082__ $$a540
000837917 1001_ $$0P:(DE-HGF)0$$aZhang, Chaofeng$$b0
000837917 245__ $$aPromoting Lignin Depolymerization and Restraining the Condensation via an Oxidation-Hydrogenation Strategy
000837917 260__ $$aWashington, DC$$bACS$$c2017
000837917 3367_ $$2DRIVER$$aarticle
000837917 3367_ $$2DataCite$$aOutput Types/Journal article
000837917 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1506320518_17751
000837917 3367_ $$2BibTeX$$aARTICLE
000837917 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837917 3367_ $$00$$2EndNote$$aJournal Article
000837917 520__ $$aFor lignin valorization, simultaneously achieving the efficient cleavage of ether bonds and restraining the condensation of the formed fragments represents a challenge thus far. Herein, we report a two-step oxidation–hydrogenation strategy to achieve this goal. In the oxidation step, the O2/NaNO2/DDQ/NHPI system selectively oxidizes CαH–OH to Cα═O within the β-O-4 structure. In the subsequent hydrogenation step, the α-O-4 and the preoxidized β-O-4 structures are further hydrogenated over a NiMo sulfide catalyst, leading to the cleavage of Cβ–OPh and Cα–OPh bonds. Besides the transformation of lignin model compounds, the yield of phenolic monomers from birch wood is up to 32% by using this two-step strategy. The preoxidation of CαH–OH to Cα═O not only weakens the Cβ–OPh ether bond but also avoids the condensation reactions caused by the presence of Cα+ from dehydroxylation of CαH–OH. Furthermore, the NiMo sulfide prefers to catalyze the hydrogenative cleavage of the Cβ–OPh bond connecting with a Cα═O rather than catalyze the hydrogenation of Cα═O back to the original CαH–OH, which further ensures and utilizes the advantages of preoxidation.
000837917 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000837917 7001_ $$0P:(DE-HGF)0$$aLi, Hongji$$b1
000837917 7001_ $$0P:(DE-HGF)0$$aLu, Jianmin$$b2
000837917 7001_ $$0P:(DE-HGF)0$$aZhang, Xiaochen$$b3
000837917 7001_ $$0P:(DE-Juel1)168372$$aMacArthur, Katherine$$b4
000837917 7001_ $$0P:(DE-Juel1)130695$$aHeggen, Marc$$b5
000837917 7001_ $$0P:(DE-HGF)0$$aWang, Feng$$b6$$eCorresponding author
000837917 773__ $$0PERI:(DE-600)2584887-2$$a10.1021/acscatal.7b00148$$n5$$p3419 - 3429$$tACS catalysis$$v7$$x2155-5435$$y2017
000837917 8564_ $$uhttps://juser.fz-juelich.de/record/837917/files/acscatal.7b00148.pdf$$yRestricted
000837917 8564_ $$uhttps://juser.fz-juelich.de/record/837917/files/acscatal.7b00148.gif?subformat=icon$$xicon$$yRestricted
000837917 8564_ $$uhttps://juser.fz-juelich.de/record/837917/files/acscatal.7b00148.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000837917 8564_ $$uhttps://juser.fz-juelich.de/record/837917/files/acscatal.7b00148.jpg?subformat=icon-180$$xicon-180$$yRestricted
000837917 8564_ $$uhttps://juser.fz-juelich.de/record/837917/files/acscatal.7b00148.jpg?subformat=icon-640$$xicon-640$$yRestricted
000837917 8564_ $$uhttps://juser.fz-juelich.de/record/837917/files/acscatal.7b00148.pdf?subformat=pdfa$$xpdfa$$yRestricted
000837917 909CO $$ooai:juser.fz-juelich.de:837917$$pVDB
000837917 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)168372$$aForschungszentrum Jülich$$b4$$kFZJ
000837917 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130695$$aForschungszentrum Jülich$$b5$$kFZJ
000837917 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000837917 9141_ $$y2017
000837917 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS CATAL : 2015
000837917 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837917 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000837917 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000837917 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837917 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837917 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837917 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000837917 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS CATAL : 2015
000837917 920__ $$lyes
000837917 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000837917 980__ $$ajournal
000837917 980__ $$aVDB
000837917 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000837917 980__ $$aUNRESTRICTED