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Insights into the dielectric response of ferroelectric relaxors from statistical modeling
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Ferroelectric relaxors are complex materials with distinct properties. The understanding of their dielectric
susceptibility, which strongly depends on both temperature and probing frequency, has been a challenge for
researchers for many years. Here we report a macroscopic and phenomenological approach based on statistical
modeling to investigate how the dielectric response of a relaxor depends on temperature. Employing the
Maxwell-Boltzmann distribution and considering temperature-dependent dipolar orientational polarizability,
we propose a minimum statistical model and specific equations to understand and fit numerical and experimental
dielectric responses versus temperature. We show that the proposed formula can successfully fit the dielectric
response of typical relaxors, including Ba(Zr,Ti)O3, 0.87Pb(Zn1/3Nb2/3)O3-0.13PbTiO3, 0.95Pb(Mg1/3Nb2/3)
O3-0.05Pb(Zr0.53Ti0.47)O3, and Bi-based compounds, which demonstrates the general applicability of this
approach.
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I. INTRODUCTION

Relaxor ferroelectrics are materials that exhibit interesting
dielectric responses different from normal ferroelectrics. For
instance, they often possess relaxation modes at low frequen-
cies (<1 GHz). Relaxor ferroelectrics have been exploited
in many applications, such as actuators due to their giant
electromechanical couplings [1,2], and their properties have
extensively been investigated, including structural properties
[e.g., polar nanoregions (PNRs)] using neutron scattering [3],
dielectric responses [4–9], the crossover from ferroelectrics to
relaxors [9]. To understand such systems, many theories have
been proposed [3,10–16]. Relaxors are complex systems, to
some extent similar to spin glasses [13,14,17], in that their
compositions are, without exception, made of complex oxides
containing different ions and inevitably inhomogeneous. For
instance, the B-site ions of typical relaxors Ba(Zr,Ti)O3 (BZT)
and Pb(Mg1/3Nb2/3)O3 (PMN) are distributed randomly.

The dielectric response of ferroelectric relaxors is the defin-
ing feature that differentiates them from normal ferroelectrics:
(i) large susceptibilities at low frequencies (gigahertz or
lower); (ii) even more unusual, the characteristic temperature
Tm at which the susceptibility peaks strongly depends on the
frequency of the probing ac electric field. In other words,
the susceptibility χ depends on both temperature T and
probing frequency ν. Although such phenomena are well
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known experimentally [11,18–23], numerical generation of
the relaxor’s dielectric response from model-based simulations
has been challenging work. For instance, the shift of Tm of
the lead-free relaxor BZT was only numerically simulated
recently [6]. Since numerous ferroelectric relaxors exist,
numerically treating each of them remains a daunting task.
One way to mitigate this difficulty is to resort to statistical
modeling [24]. For a complex system, a statistical approach
can provide intuitive understanding by capturing dominant
factors, derive equations to understand experimental results,
and help extracting useful information. In the present paper,
we adopt this approach to treat the dielectric response of
relaxors and show that such a statistical model can indeed
be applied to understand how the dielectric constants change
with temperatures and probing frequencies.

Whereas the susceptibility of relaxors χ (T ,ν) depends on
both temperature and frequency, theoretical models often are
proposed to treat ν and T separately [7,10,11,25–27]. For
instance, at a given temperature, two processes are employed
in the fitting of χ (ν) of Ba(Ti0.675Zr0.325)O3 [18,22]: The
universal relaxor process and the conventional relaxor process,
which have different relaxation characteristics employing
the Curie–von Schweidler law at low frequencies and the
Kohlrausch-Williams-Watts law at higher frequencies [18].
Other formulas, such as the Cole-Cole and the Havriliak-
Negami equations, also are employed to model the dielectric
response with respect to frequency at given temperatures.
When phonon modes are close to or interacting with the
relaxation modes, it becomes necessary to use coupled modes
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to model the dielectric response [5,6]. On the other hand, there
are also many investigations on how the dielectric response χ

depends on the temperature T at given frequencies. In addition
to the well-known Curie law for χ (T ) at high temperatures,
the most useful equation for fitting around the dielectric peak
appears to be the square law. In particular, the formula,

1

ε(T )
= 1

εA

+ (T − TA)
η

B
(1)

was proposed to describe the permittivity at T > Tm [28,29].
Initially, η was found to be 2, but later was shown to be between
1 and 2 [4,11,30–32]. Here, we further the investigation in
this direction and attempt to address some important questions
regarding relaxor behaviors. We will explain why the dielectric
constant has a peak value at Tm and what causes the asymmetry
around the peak. Moreover, by constructing a statistical model
that properly describes how dipoles behave in relaxors, we
propose a formula to fit experimental results, which further
illuminates the physics behind relaxation behavior.

This paper is organized as follows. In Sec. II, we introduce
the statistical model. In Sec. III, we apply this model to both
lead-free and lead-based relaxors. In Sec. IV, we discuss the
implication and limitation of this approach. Finally, in Sec. V,
we present a brief conclusion.

II. STATISTICAL MODEL

The statistical model starts by considering a critical differ-
ence between ferroelectric relaxors and normal ferroelectrics.
One crucial observation is that all relaxor ferroelectrics
discovered so far are inevitably disordered and inhomogeneous
systems. For instance, in BZT, Zr and Ti ions are distributed
randomly, so are the Mg and Nb ions in PMN when the samples
are treated macroscopically. In addition, PMN possesses an
electric field arising from heterovalent Mg2+ and Nb5+ ions,
which affects dipole distribution. It is important to further note
that well-known relaxors can become nonrelaxors if their ions
are ordered perfectly [33–35].

A. Individual dipoles

The randomness of ions and the ensuing lack of long-range
ordering has the important consequence that phonon modes
may not be the best description for understanding relaxors.
This fact is evidenced by the effective Hamiltonian that
describes the BZT relaxor [12–14],

E =
∑

i

(κi |ui |2 + λi |ui |4) + · · · , (2)

where i labels the sites occupied randomly by Zr or Ti and
κi (λi) are the second- (fourth-) order coefficients in the Taylor
expansion of energy with respect to ui , which is the local
dipole on site i. For a homogeneous system, where ki and
λi are constants, we can usually first consider the harmonic
term and construct phonon modes, which are then used to
describe the system, especially in low temperatures when the
system condenses to particular phonon modes [36]. In contrast,
with the loss of periodicity in relaxors, this approach is no
longer profitable. One can insist on using averaged atoms
(e.g., replacing Zr and Ti atoms with their average in BZT) to

retain the use of phonon modes. However, it is then necessary
to consider defect-pinned intrinsic localized modes [37] and
phonon localization [3].

The inhomogeneity also has important consequences on
ferroelectric phase transitions. In the typical ferroelectric
material BaTiO3, we may ascribe the temperature-driven phase
transition to the condensation of phonons to a particular
phonon mode [36]. At high temperatures, many phonon modes
are occupied; at low temperatures, due to mode softening,
a certain mode (often corresponding to the well-known soft
mode [38–40] in perovskites) has essentially zero energy,
which dominates the system and induces phase transitions.
Unlike BaTiO3, there is no global phase transition due to
the existence of PNRs and/or random electric fields, which
eliminates the mode softening phenomenon and renders a
global dipole order difficult to achieve [12,41]. In addition,
relaxors exhibit strange phonon behavior, such as the “water-
fall” effect [42–44] and the localization [3], further showing
their differences from normal ferroelectrics. In this paper,
we focus on individual dipoles and statistically model their
dielectric responses. This change in view implies that phonon
modes are less important in our analysis. We will show in the
following that such consideration leads to fruitful results and
better understanding of relaxors.

B. Statistics of individual dipoles

Individual dipoles can be categorized into different groups
based on their dynamics, and each group will have different
contributions to susceptibility. We proceed by summarizing
various interactions between dipoles and assuming such
interactions effectively introduce a potential well of average
depth Eb. We may relate Eb to the size of PNRs arising from the
clustering of the same-type ions [12] and/or random electric
field caused by heterovalent ions [41,42,45].

Since the kinetic energy of individual dipoles obeys
the Maxwell-Boltzmann distribution, at temperature T , the
number of dipoles with kinetic-energy Ekin is given by

f (Ekin) = 2N

√
Ekin

π

(
1

kBT

)3/2

exp

(
− Ekin

kBT

)
, (3)

where kB is the Boltzmann constant, N is the total number
of dipoles, and f (Ekin)dEkin is the number of dipoles having
a kinetic energy between Ekin and Ekin + dEkin. With this
distribution function, we can calculate the number of dipoles
with kinetic energy that exceeds the potential well Eb, which
is given by

N1(Eb,T ) =
∫ ∞

Eb

dEkinf (Ekin)

= N

√
4

π

√
Eb

kBT
exp

(
− Eb

kBT

)
+N erfc

(√
Eb

kBT

)
,

(4)

here erfc is the complementary error function. The number of
dipoles confined to the potential well then is given by

N2(Eb,T ) = N − N1(Eb,T ). (5)
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The next step is to treat the two sets of dipoles (N1 versus
N2) separately, assigning different susceptibilities to them. The
total susceptibility then is given by

χ (T ,ν) = χ1(T ,ν)P1(Eb,T ) + χ2(T ,ν)P2(Eb,T ), (6)

where χ1(T ,ν) and χ2(T ,ν) describe the dielectric responses
of each dipole group, whose form will be specified later. We
also define

P1(Eb,T ) ≡ 1

N
N1(Eb,T ),

P2(Eb,T ) ≡ 1

N
N2(Eb,T )

to normalize the dipoles to unit volume. Equation (6) is the
centerpiece of this paper and will be demonstrated to be useful
for the investigation of relaxors in general.

III. RESULTS

We apply Eq. (6) to fit various χ ’s versus T ’s obtained
experimentally or numerically. The relaxors studied here
include both lead-based (e.g., PMN) and lead-free relaxors
(e.g., BZT).

A. Susceptibility of BZT

For the static susceptibility of the lead-free relaxor BZT
[6,8,22,46], we assume: (i) dipoles with kinetic energy that
overcomes the potential well can be treated as free dipoles,
subject only to thermal excitation; (ii) dipoles inside the
potential well only contribute a constant susceptibility χ2. The
total susceptibility thus is given by

χ (T ) = χ1L
(

θ

T

)
P1(Eb,T ) + χ2P2(Eb,T ), (7)

where L(x) = coth(x) − 1/x is the Langevin function, known
for depicting orientational polarization under thermal fluc-
tuations [47,48] and Eb, χ1, χ2, and θ are constants which
will be determined by fitting experimental or numerical data.
It can be inferred from Eq. (7) that χ2 is the susceptibility
of the material at zero Kelvin, χ1L( θ

T
) is essentially the

Curie law at high temperatures, and θ is proportional to
the magnitude of the low-frequency electric field used in
experimental measurements.

We first test Eq. (7) against the static susceptibility versus
temperature obtained with the Monte Carlo (MC) simulation
in a previous work [12]. Figure 1 shows that the overall fitting
is good enough to reproduce results from MC simulations
with the parameters shown in Table I. The closeness of Eb and
Tm indicates the average depth of the potential wells plays a
dominant role in determining Tm. Close examination of Fig. 1
also reveals that the fitting at the lowest temperature (�25 K)
is not as good as the rest. To address this issue, we added a
Gaussian distribution to Eb to remedy this minor problem.
However, the resulting equation is quite complicated and
deviates from our original goal of proposing a simple analytical
formula to fit susceptibility. Therefore this additional step is
not adopted here.

In order to have a good understanding of BZT’s susceptibil-
ity, we show each component of Eq. (7) in Fig. 2. Figure 2(a)
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FIG. 1. Fitting the static susceptibility of Ba(Zr0.5,Ti0.5)O3 ob-
tained from the Monte Carlo simulation using Eq. (7). The blue dots
are from the Monte Carlo simulation [12], and the red solid line is
the fitting curve using Eq. (7).

shows that P1(Eb,T ) and P2(Eb,T ) have opposite trends as
the temperature increases. The number of dipoles that can
overcome the potential confinement (P1) steadily increases
with temperature, whereas the number of dipoles inside (P2)
continuously becomes smaller. Figure 2(b) shows that the
Langevin function is normalized at T = 0 and decreases with
temperature. Such a feature describes the ability of the free
dipoles to respond to an external dc electric field. Moreover,
Fig. 2(b) also shows the product of the Langevin function and
P1, which already exhibits some resemblance to the BZT’s
susceptibility [Fig. (1)].

Having examined the static susceptibility, we now move
to the frequency-dependent dielectric response, which often
is taken as a characteristic property of the relaxors [9,49].
We propose another equation to fit the susceptibility versus
temperature,

χ (T ) = χ1

1 + b exp(−θ/T )
P1(Eb,T ) + χ2P2(Eb,T ), (8)

where χ1, χ2, b, and θ are constants at a given frequency
(but may change when the frequency changes). The dielectric
contribution from dipoles with kinetic energies higher than the
potential well is given by

w1(T ) = 1

1 + b exp(−θ/T )
. (9)

which, similar to the Langevin function, monotonically
decreases with temperature T . The choice of this function
reflects two considerations: (i) at very low temperatures (T
close to 0), such dipoles will follow the probing ac electric
field closely, leading w1(T ) to its maximum; and (ii) at
higher temperatures, thermal motions of these dipoles hamper
their ability to follow the ac electric field, leading to smaller
w1(T ). We will discuss this equation further in Sec. IV. With
one more parameter (b), this function may be taken as an
extension to the Langevin function. We note that Eq. (7) can

TABLE I. Fitting parameters of various materials for Eq. (11)

χ1 θ (K) χ2 Eb (K)

Values 741.6 220.5 64.7 159.1
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(a)

(b)

FIG. 2. The Maxwell-Boltzmann distribution [panel (a)] and the
Langevin function L [panel (b)] versus temperature. The parameters
from Table I are used to plot each function.

no longer be used because the Langevin function is derived
under the equilibrium condition of dipoles, whereas dipoles
under ac electric fields are never in true equilibrium, therefore
invalidating the use of the Langevin function.

We use Eq. (8) to fit BZT’s susceptibility versus temperature
at different frequencies and show the results in Fig. 3. Since Eb

is a material parameter, we use the same value (Eb = 159.1 K)
obtained by fitting the static susceptibility (cf. Fig. 1). In Fig. 3,
the numerical results are obtained from the MD simulations
reported in Ref. [6]. As the figure shows, satisfactory fittings
are achieved for frequencies between 1 and 1000 GHz. Table II
shows all the parameters. Among them, θ1 and χ1 change
substantially over the specified frequency range as shown in

TABLE II. Fitting parameters of numerically simulated
Ba(Zr0.5,Ti0.5)O3 susceptibility at various frequencies [6] using
Eq. (8).

1 GHz 10 GHz 100 GHz 1000 GHz

θ (K) 579.6 762.6 1128.4 2158
χ1 406.5 312.6 209.3 99.9
χ2 73.1 63.5 56.2 57.9
b 10.2 9.9 9.5 7.7
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FIG. 3. Fitting of the susceptibility of Ba(Zr0.5 Ti0.5)O3 at f =
1,10,100,1000 GHz, obtained from molecular dynamics (MD) sim-
ulation using Eq. (8).

Fig. 4, where θ depends on ln(f ) quadratically, whereas χ1

linearly depends on it [50].
To further verify the suitability of this equation for experi-

mental data, we also fit the result shown in Fig. 1 of Ref. [18]
where Ba(Ti0.675Zr0.325)O3 ceramics is measured at 10−2 and
105 Hz. Figure 5 shows that satisfactory fittings are achieved.

B. Pb-based relaxors

Unlike lead-free BZT, which possesses PNRs that
are separated by Zr-rich regions, lead-based ferroelectrics

FIG. 4. Analysis of fitting parameters versus probing frequency.
θ versus ln(f ) and χ1 versus ln(f ).
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FIG. 5. Experimental susceptibility of Ba(Ti0.675Zr0.325)O3 ce-
ramics versus temperature fitted with Eq. (8).

[19,29,41,51] have the Pb-driven dipoles across the system
[52], which cause phase transitions in systems, such as PbTiO3

and Pb(Zr,Ti)O3 [53–55]. Due to heterovalent ions inside,
typical lead-based relaxors are subject to random electric
fields, which distort the orientation of dipoles. Although the
precise consequence of the random field is not all clear
[14,15], such a distracting effect on dipoles appears to lead
to a strongly modified phase transition with diffuse and
smeared susceptibility peaks, in sharp contrast to that of normal
ferroelectrics [41,56].

To model such a system and account for the moderate
phase transition, we need a function that properly describes
the dielectric constant versus temperature. Here, we propose
to use the slightly modified well-known quadratic relation
εA

ε′ − 1 = (T −TA)2

2δ2 proposed by Bokov and Ye [4] to relate the
relaxor’s permittivity to temperature [28,29] for dipoles above
the average potential well [also see Eq. (1) ]. This equation
can be rearranged to give the following expression:

w2(T ) = 1

1 + ∣∣ T −TO

θ

∣∣γ , (10)

where γ is a critical exponent, TO is associated with the peak
position of the moderate phase transition, and θ is a parameter
describing the width of the peak. We note that, compared to
εA

ε′ − 1 = (T −TA)2

2δ2 , we have used TO instead of TA, θ instead

of
√

2δ, and a general critical exponent γ instead of the fixed
number 2. Appendix A provides a further discussion of this
formula. We also note that such a choice of w2(T ) also agrees
with the analysis recently given by Uchino [10], who provides
a possible physical interpretation for this formula. Combining
Eqs. (6) and (10), we obtain the following equation to fit lead-
based relaxors:

χ (T ) = χ1

1 + ∣∣ T −TO

θ

∣∣γ P1(Eb,T ) + χ2P2(Eb,T ), (11)

Temperature (K)
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FIG. 6. Fitting the relative permittivity of PZN-0.13PT at f =
1,10,100 kHz using Eq. (11).

where Eb, χ1, χ2, To, θ , and γ are fitting parameters. The
meaning of χ1, χ2, and Eb are the same as discussed in
Sec. III A.

Two considerations motivate the adoption of Eq. (11): (i)
Pb-based relaxors usually have Pb-driven dipoles that exist
across the system unlike BZT where dipole clusters (PNRs)
are separated by Zr-rich regions; (ii) as a consequence of
(i), despite strong random electric fields, there could be a
global phase transition which exhibits temperature dependence
following Eq. (10) [10].

To verify that Eq. (11) indeed works, we experimentally ob-
tained the permittivity of 0.87Pb(Zn1/3Nb2/3)O3-0.13PbTiO3

(PZN-0.13PT) [57,58] versus temperature at frequencies of
f = 1,10 and 100 kHz [59]. As Fig. 6 shows, all three
fittings are satisfactory. We note that in this fitting there is
no need to have two γ values above and below TO [10]. The
asymmetric peak shown in Fig. 6 naturally is caused by the
Maxwell-Boltzmann distribution function.

Table III summarizes the fitting parameters of the permittiv-
ity measured at various frequencies. Among all the parameters,
the critical component γ changes the most (by 19.3% from 1 to
100 kHz) and decreases with increasing frequency; similarly,
TO also changes by 9.5%. On the other hand, χ1, χ2, and θ are
relatively constant, which are independent of the frequency,
and may be taken as material parameters. Such results hint
towards the following formula that describes the dependence

TABLE III. Fitting parameters of PZN-0.13PT’s permittivity
measured at different frequencies. As the table demonstrates, γ and
TO are the most important variables that change a lot with frequency.

1 kHz 10 kHz 100 kHz

γ 2.02 1.82 1.63
TO (K) 219.6 229.0 240.6
Eb (K) 495.3 523.6 552.2
χ1

a 56601 55781 53529
χ2 1320.9 1284.2 1238.0
θ (K) 102.4 103.1 104.5

aHere, χ1 and χ2 are relative permittivity not susceptibility.
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FIG. 7. Fitting of the relative permittivity of 0.95Pb
(Mg1/3Nb2/3)O3-0.05Pb(Zr0.53Ti0.47)O3 measured at 800 Hz using
Eq. (11).

of PZN-0.13PT on both the temperature and the probing
frequency:

χ (T ,ν) = χ1

1 + ∣∣ T −TO (ν)
θ

∣∣γ (ν) P1(Eb,T ) + χ2P2(Eb,T ), (12)

where the two functions TO(ν) and γ (ν) are frequency
dependent whereas other parameters are constants for a given
material. It is also worth noting that, for PZN-0.13PT χ2 � χ1,
which indicates that the dipoles with kinetic energies above the
potential well play a more important role, in contrast to the case
of BZT (see Table II).

To further verify the proposed formula, we also fit the
permittivity versus temperature of another lead-based relaxor
0.95Pb(Mg1/3Nb2/3)O3-0.05Pb(Zr0.53Ti0.47)O3 [19]. It can be
seen from Fig. 7 that the overall fitting is satisfactory with
fitting parameters γ = 1.66 and TO = 256.7 K. Similar to the
PZN-0.13PT case, the results here also show χ2 � χ1.

IV. DISCUSSION

In the statistical model we divide the dipoles inside
ferroelectrics relaxors into two groups, one group being
confined in potential wells, whereas the other having overcome
the potential confinement and exhibiting a more vibrant dy-
namics. It has been demonstrated that the Maxwell-Boltzmann
distribution plays a significant role in determining the profile
of χ (T ). To address a particular type of relaxor, one only
need to adjust the dielectric response function associated with
each group of dipoles while keeping the rest unchanged. In
this section, we discuss a few issues of this approach and its
limitations.

A. Characteristic temperature Tm

The present analysis helps us to understand why the
susceptibility of a relaxor reaches its peak value at some
temperature Tm. For BZT, the function χ1L( θ

T
) [see Eq. (7)

and Fig. 2] or χ1/[1 + b exp(−θ/T )] [see Eq. (8)] describes
the contribution to susceptibility from dipoles with kinetic

FIG. 8. The energy well for dipoles is shifted and lowered when
an electric field is applied.

energies higher than Eb. These two functions are both
monotonically decreasing with T , reflecting the fact that
thermal motions prevent dipoles from aligning with the applied
electric field. On the other hand, the number of dipoles above
the potential wells increases with T as governed by the function
P1(Eb,T ) (see Fig. 2). The combined effects of the two
factors give rise to the susceptibility peak at Tm. However,
the situation for lead-based relaxors is different. The function
χ1/(1 + | T −TO

θ
|γ ) [see Eq. (11)], which largely determines the

value of Tm, manifests the vestige of a true phase transition in
normal ferroelectrics, which is torn down by random electric
fields and/or PNRs in the relaxors.

B. Rationale for Eq. (9)

For lead-free BZT, we propose Eq. (9) to describe the
susceptibility of dipoles with kinetic energies higher than Eb.
This choice follows the Debye relaxation, i.e., χ ∼ 1/(1 +
ω2τ 2) [47], where ω is a constant (the probing frequency)
and τ is the temperature-dependent relaxation time. For a
thermally activated process, the relation between τ and T often
is specified by the Arrhenius law, i.e., 1/τ = A exp(−Ea/T ),
where Ea > 0 is the activation energy [37,56,60]. In this case,
the susceptibility will be χ ∼ 1/[1 + A2ω2 exp ( 2Ea

T
)], which

is discussed by Jonscher [61]. However, the dynamic process
considered here describes dipoles falling to a state of lower
energy, which is created temporarily by the probing electric
field (see. Fig. 8). Therefore the activation energy in this
process will be negative, i.e., χ ∼ 1/[1 + A2ω2 exp (− 2|Ea |

T
)],

which is the form adopted in Eq. (9).
We note that negative activation energy is known in

some chemical reactions [60]. Negative activation energy
appears here because when an ac electric field perturbs
dipoles and tilts the relative energy of potential wells, the
dipoles outside the potential wells will move towards the
temporary potential minimum. However, the drifting to the
potential minimum is hindered by thermal fluctuations of such
dipoles. In fact, a higher temperature (corresponding to higher
kinetic energy) results in a slower relaxation to the energy
minimum (corresponding to larger τ ), leading to negative
activation energy. Furthermore, other interactions between
dipoles (in particular short-range interaction) also may affect
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this relaxation process and slow it down as temperature
increases, giving rise to an apparent negative activation energy,
whereas this is basically a zero-energy barrier process. We also
note that, since the applied ac electric field is responsible for
shifting the energy minimum and causing dipoles to drift, the
change in its frequency may well alter the process, explaining
why θ in Eq. (8) is dependent on the probing frequency.
Similar arguments explain why TO also depends on the probing
frequency.

In the above analysis, we focus on dipoles with kinetic en-
ergies higher than Eb. These dipoles are able to drift from one
energy minimum to another when an ac electric field perturbs
the system. It has been proposed that the drifting/hopping of
dipoles from one potential well to another causes relaxations.
However, without distinguishing dipoles inside and outside
the potential well, such a proposal seems to have a tendency
of confusing the wait time before hopping t (which reflects
the distribution of dipoles at a given temperature) with the
relaxation time τ (which reflects how fast dipoles drift to
the transient energy minimum and relates to the loss peak
frequency in the Debye function), leading to some difficulties.

C. Limitations

In previous studies [5,6,41], ab initio calculations are used,
which prescribe all important interactions between dipoles and
other degrees of freedom in the relaxors, and then MC or MD is
used to numerically work out the consequences. In the present
paper we do not start from an ab initio calculation, instead,
employ statistical and phenomenological arguments. Having
shown results and insights obtained with this approach, we
now discuss possible limitations of the present approach with
respect to the treatment of details, accuracy, and prediction
power.

First, the proposed equations for lead-free [Eq. (8)] and
lead-based relaxors [Eq. (12)] have five and six parameters,
respectively. Ideally, one hopes to be able to use as few
parameters as possible. However, it will be noted that, among
these parameters, many are only material dependent (i.e., they
do not depend on frequency or temperature). For instance, for
a lead-free relaxor, Eb is a constant; for a lead-based relaxor,
Eb, χ1, χ2, and θ are close to constants (see Table III). For a
given sample, these parameters may only need to be calibrated
once. In this way, the number of parameters will significantly
be reduced.

Second, in this paper we have focused on the temperature
dependence of susceptibility. The dependence on frequency
needs further investigation. For instance, TO(ν) and γ (ν) in
Eq. (12) need to be specified explicitly to address this issue.
We note that the results shown in Table III will provide clues
to the TC’s and γ ’s dependence on ν and eventually help find
analytical expressions for χ (T ,ν). In addition, we generally
ignored possible long-range ordering of dipoles, which is
another limitation to this approach. Although such possible
long-range ordering makes relaxor physics rich, it will bring
back Bose-Einstein statistics and make the current formulation
more complicated. To what extent the Bose-Einstein and the
Maxwell-Boltzmann distributions will be used for ferroelectric
relaxors remains an open question.

Third, at high temperatures, the Curie law is observed
in many ferroelectrics. For the static susceptibility of BZT
[Fig. 1], this law can be recovered from the proposed equation,
Eq. (7). On the other hand, for Eqs. (8) and (11), the Curie
law cannot be recovered directly. For Eq. (11), we have
the asymptotic relation χ ∼ [A/(T − TO)γ + B/T 3/2] at very
large T . It is unclear how well this relation can fit the Curie law.
Therefore, in fitting experimental data at high temperatures,
one needs to bear in mind that Eqs. (8) and (11) should be
used with care.

Finally, with formulas, such as Eq. (12), we can in principle
obtain the relation between Tm and ν [assuming we know
the analytical expressions of TO(ν) and γ (ν)], which can
then be compared to the well-known Vogel-Fulcher law [6].
However, we have failed to obtain analytical expressions to
relate Tm (note that Tm is not TO whereas they may be
close) to ν and believe that a numerical calculation seems
to be the only feasible way to establish the relation between
Tm and ν.

V. CONCLUSIONS

Instead of working on the atomic level, the present paper
employs a macroscopic statistical approach to describe the
dielectric properties of the relaxors. The effects of disorder,
PNRs, and random electric fields are considered statistically by
introducing the average potential well, which can trap dipoles
of low kinetic energies. An external ac electric field mostly
will increase the magnitude of trapped dipoles but can rotate
dipoles free from such trapping and align them with the field.
These two groups of dipoles give rise to two different types
of dielectric responses as shown in Eqs. (7), (8), and (11).
The analytical equations resulting from this approach provide
insight into the experimental and numerical results of the
relaxors. Among other things, it is shown that the characteristic
temperature Tm is determined by the Maxwell-Boltzmann
distribution of the dipoles’ kinetic energies as well as their
ability to respond to the applied electric field. We can also
conclude that lead-free relaxors (e.g., BZT) are different
from lead-based relaxors (e.g., PZN-0.13PT) in that: (i) The
mechanisms determining Tm are different. For lead-based
relaxors, it appears TO alone is able to determine Tm, whereas
for BZT, both w1(T ) and P (Eb,T ) are important; and (ii) for
BZT, χ1 and χ2 are of the same order, whereas χ1 � χ2 for
the Pb-based relaxors, indicating that the dipoles outside the
average potential well dominate the dielectric response of Pb-
based relaxors. These results demonstrate that this statistical
approach can provide a good understanding of important
relaxor systems, and the proposed equations can be adopted
in fitting experimental data of the relaxors in general (see
Appendix C).
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APPENDIX A: EXTENDED FITTING RANGE

Unlike normal ferroelectrics, whose permittivity follows
the well-known Curie-Weiss law 1/ε = (T − TCW )/C above
the Curie temperature, relaxors obey this law only for
temperatures much higher (typically hundreds of degrees) than
Tm where a broad and diffusive peak centers. Smolenskii [28]
and Kirillov and Isupov [29] were the first ones proposing a
quantitative description of such peaks. They suggested that
the total number of relaxator contributing to the dielectric
response in the vicinity of the permittivity peak is temperature
dependent, governed by a Gaussian function with a mean
value of TO and a standard deviation δ. With some additional

(a)

(b)

FIG. 9. The susceptibility of PMN-10PT obtained at 100 kHz are
fitted with Eq. (A3) [panel (a)] and Eq. (11) [panel (b)].

assumptions, they derived the following expression:

ε0

ε − ε∞
= exp

[
(T − To)2

2δ2

]
, (A1)

(a)

(b)

(c)

FIG. 10. The plotting for w1(T ) and w2(T ) with their
parameters obtained by fitting BZT [panel (a), also see
Fig. 3], PZN-0.13PT [panel (b), also see Fig. 6], and
0.95Pb(Mg1/3Nb2/3)O3-0.05Pb(Zr0.53Ti0.47)O3 [panel (c), also see
Fig. 7].
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(a)

(c) (d)

(b)

FIG. 11. Fitting the permittivity of various materials using Eq. (11). The blue circles are experimental data, and the red solid line is the
fitting curve.

where ε∞ is the high-frequency contribution and ε0 is a
temperature and frequency-dependent parameter.

Neglecting ε∞ and assuming that To is equal to the
temperature where permittivity peaks (Tm), one can expand
Eq. (A1) and obtain a truncated power series [11],

εm

ε
= 1 + (T − Tm)2

2δ2
m

. (A2)

The quadratic law [Eq. (A2)] was found to approximately be
valid for T > Tm for many materials. However, the deviations
of some experimental data from the quadratic law incited many
authors to search for new formulas. A power law was proposed
[30,31]

εm

ε
= 1 + |T − Tm|γ

2δ2
γ

, (A3)

with 1 � γ � 2, which differs from Eq. (A2) in that an
empirical exponent γ is used instead of 2. This expression
can be rearranged to give

ε

εm

= 1

1 + (T −Tm)γ

2δ2
γ

= 1

1 + ∣∣ T −Tm

(2δ2
γ )1/γ

∣∣γ , (A4)

where the right-hand side is just the w2(T ) we propose in
Eq. (10).

Although Eq. (A2) or (A3) can successfully fit the temper-
ature range of T > Tm, it is hard to fit the whole temperature
range that is experimentally reachable [see Fig. 9(a)] with the
main obstacle being the asymmetrical line shape around Tm.
This obstacle is now resolved in this paper by introducing
Eq. (11) where the asymmetry is accounted for by considering
the Maxwell-Boltzmann distribution of dipoles. We illustrate

this point in Fig. 9 where fittings of PMN-10PT using Eqs. (A3)
and (11) are compared.

APPENDIX B: w1(T ) AND w2(T )

Figure 10 plots w1(T ) [Eq. (9)] and w2(T ) [Eq. (10)] with
their parameters obtained by fitting BZT (Fig. 3), PZN-0.13PT
(Fig. 6), and 0.95Pb(Mg1/3Nb2/3)O3-0.05Pb(Zr0.53Ti0.47)O3

(Fig. 7).
Figure 10(a) shows that, at low frequencies

(�10 GHz), w1(T ) resembles the Fermi-Dirac function,
that is, below ∼250 K, its value is close to one but becomes
close to zero for T above ∼250 K. At a higher frequencies
(e.g., 1000 GHz), however, this function strongly deviates
from the Fermi-Dirac function with a long tail extending to
high temperatures. Figures 10(b) and 10(c) show that w2(T )
is a symmetric peak, likely related to a phase transition
in a lead-based relaxor. For Fig. 10(b), the peak position
(around 220 K) slightly shifts toward higher temperatures
with increasing frequency.

TABLE IV. Fitting parameters of various materials for Eq. (11).

PMN PMN-10PT 0.4BCLT-0.6BMT 0.55BNT-0.45PT

χ1 32201.07 67955.26 45373.38 11510.60
Eb (K) 497.99 556.61 2204.65 985.24
χ2 442.07 792.65 271.47 232.94
TO (K) 272.73 319.51 364.84 508.84
θ 44.10 35.71 121.38 255.20
γ 1.83 1.92 1.96 1.52
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APPENDIX C: APPLICABILITY TO OTHER SYSTEMS

In previous sections, we have focused on BZT and lead-
based relaxor ferroelectrics and shown their fitting results. As
a matter of fact, we have tested the proposed formula with
various relaxor systems and obtained useful results. Figure 11
shows the results of four relaxor systems and the fitting

of the real part of their permittivity: (i) PMN; (ii) PMN-
10PT; (iii) 0.4(Ba0.8,Ca0.2)La0.3TiO3-0.6Bi(Mg0.5,Ti0.5)O3;
(iv) 0.55Bi(Ni1/2,Ti1/2)O3-0.45PbTiO3. For these fittings, we
have used Eq. (11) and obtained satisfactory results with
the fitting parameters shown in Table IV, which further
demonstrates the applicability of our approach.
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