001     837923
005     20210129231445.0
024 7 _ |a 10.1021/acsnano.7b02637
|2 doi
024 7 _ |a 1936-0851
|2 ISSN
024 7 _ |a 1936-086X
|2 ISSN
024 7 _ |a WOS:000408520900049
|2 WOS
037 _ _ |a FZJ-2017-06693
082 _ _ |a 540
100 1 _ |a Zhang, Yong
|0 P:(DE-HGF)0
|b 0
245 _ _ |a Flexible Quasi-Two-Dimensional CoFe 2 O 4 Epitaxial Thin Films for Continuous Strain Tuning of Magnetic Properties
260 _ _ |a Washington, DC
|c 2017
|b Soc.
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1506321677_17752
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Epitaxial thin films of CoFe2O4 (CFO) have successfully been transferred from a SrTiO3 substrate onto a flexible polyimide substrate. By bending the flexible polyimide, different levels of uniaxial strain are continuously introduced into the CFO epitaxial thin films. Unlike traditional epitaxial strain induced by substrates, the strain from bending will not suffer from critical thickness limitation, crystalline quality variation, and substrate clamping, and more importantly, it provides a more intrinsic and reliable way to study strain-controlled behaviors in functional oxide systems. It is found that both the saturation magnetization and coercivity of the transferred films can be changed over the bending status and show a high accord with the movement of the curvature bending radius of the polyimide substrate. This reveals that the mechanical strain plays a critical role in tuning the magnetic properties of CFO thin films parallel and perpendicular to the film plane direction.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Shen, Lvkang
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Liu, Ming
|0 P:(DE-HGF)0
|b 2
|e Corresponding author
700 1 _ |a Li, Xin
|0 P:(DE-Juel1)6775
|b 3
700 1 _ |a Lu, Xiaoli
|0 P:(DE-HGF)0
|b 4
|e Corresponding author
700 1 _ |a Lu, Lu
|0 P:(DE-Juel1)161232
|b 5
700 1 _ |a Ma, Chunrui
|0 0000-0002-7824-7930
|b 6
700 1 _ |a You, Caiyin
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Chen, Aiping
|0 0000-0003-2639-2797
|b 8
700 1 _ |a Huang, Chuanwei
|0 P:(DE-HGF)0
|b 9
700 1 _ |a Chen, Lang
|0 P:(DE-HGF)0
|b 10
700 1 _ |a Alexe, Marin
|0 P:(DE-HGF)0
|b 11
700 1 _ |a Jia, Chun-Lin
|0 P:(DE-Juel1)130736
|b 12
773 _ _ |a 10.1021/acsnano.7b02637
|g Vol. 11, no. 8, p. 8002 - 8009
|0 PERI:(DE-600)2383064-5
|n 8
|p 8002 - 8009
|t ACS nano
|v 11
|y 2017
|x 1936-086X
856 4 _ |u https://juser.fz-juelich.de/record/837923/files/acsnano.7b02637.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837923/files/acsnano.7b02637.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837923/files/acsnano.7b02637.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837923/files/acsnano.7b02637.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837923/files/acsnano.7b02637.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837923/files/acsnano.7b02637.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:837923
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)6775
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)161232
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 12
|6 P:(DE-Juel1)130736
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACS NANO : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ACS NANO : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21