000837935 001__ 837935
000837935 005__ 20210129231446.0
000837935 0247_ $$2doi$$a10.1021/acsami.7b03263
000837935 0247_ $$2ISSN$$a1944-8244
000837935 0247_ $$2ISSN$$a1944-8252
000837935 0247_ $$2WOS$$aWOS:000402498600039
000837935 037__ $$aFZJ-2017-06696
000837935 082__ $$a540
000837935 1001_ $$0P:(DE-HGF)0$$aSun, Zixiong$$b0
000837935 245__ $$aLarge Energy Density, Excellent Thermal Stability, and High Cycling Endurance of Lead-Free BaZr 0.2 Ti 0.8 O 3 Film Capacitors
000837935 260__ $$aWashington, DC$$bSoc.$$c2017
000837935 3367_ $$2DRIVER$$aarticle
000837935 3367_ $$2DataCite$$aOutput Types/Journal article
000837935 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1506322086_17745
000837935 3367_ $$2BibTeX$$aARTICLE
000837935 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837935 3367_ $$00$$2EndNote$$aJournal Article
000837935 520__ $$aA large energy storage density (ESD) of 30.4 J/cm3 and high energy efficiency of 81.7% under an electrical field of 3 MV/cm was achieved at room temperature by the fabrication of environmentally friendly lead-free BaZr0.2Ti0.8O3 epitaxial thin films on Nb-doped SrTiO3 (001) substrates by using a radio-frequency magnetron sputtering system. Moreover, the BZT film capacitors exhibit great thermal stability of the ESD from 16.8 J/cm3 to 14.0 J/cm3 with efficiency of beyond 67.4% and high fatigue endurance (up to 106 cycles) in a wide temperature range from room temperature to 125 °C. Compared to other BaTiO3-based energy storage capacitor materials and even Pb-based systems, BaZr0.2Ti0.8O3 thin film capacitors show either high ESD or great energy efficiency. All of these excellent results revealed that the BaZr0.2Ti0.8O3 film capacitors have huge potential in the application of modern electronics, such as locomotive and pulse power, in harsh working environments.
000837935 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000837935 588__ $$aDataset connected to CrossRef
000837935 7001_ $$0P:(DE-HGF)0$$aMa, Chunrui$$b1$$eCorresponding author
000837935 7001_ $$0P:(DE-HGF)0$$aWang, Xi$$b2
000837935 7001_ $$0P:(DE-HGF)0$$aLiu, Ming$$b3$$eCorresponding author
000837935 7001_ $$0P:(DE-Juel1)161232$$aLu, Lu$$b4
000837935 7001_ $$0P:(DE-HGF)0$$aWu, Ming$$b5
000837935 7001_ $$0P:(DE-HGF)0$$aLou, Xiaojie$$b6
000837935 7001_ $$0P:(DE-HGF)0$$aWang, Hong$$b7
000837935 7001_ $$0P:(DE-Juel1)130736$$aJia, Chun-Lin$$b8
000837935 773__ $$0PERI:(DE-600)2467494-1$$a10.1021/acsami.7b03263$$gVol. 9, no. 20, p. 17096 - 17101$$n20$$p17096 - 17101$$tACS applied materials & interfaces$$v9$$x1944-8252$$y2017
000837935 8564_ $$uhttps://juser.fz-juelich.de/record/837935/files/acsami.7b03263.pdf$$yRestricted
000837935 8564_ $$uhttps://juser.fz-juelich.de/record/837935/files/acsami.7b03263.gif?subformat=icon$$xicon$$yRestricted
000837935 8564_ $$uhttps://juser.fz-juelich.de/record/837935/files/acsami.7b03263.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000837935 8564_ $$uhttps://juser.fz-juelich.de/record/837935/files/acsami.7b03263.jpg?subformat=icon-180$$xicon-180$$yRestricted
000837935 8564_ $$uhttps://juser.fz-juelich.de/record/837935/files/acsami.7b03263.jpg?subformat=icon-640$$xicon-640$$yRestricted
000837935 8564_ $$uhttps://juser.fz-juelich.de/record/837935/files/acsami.7b03263.pdf?subformat=pdfa$$xpdfa$$yRestricted
000837935 909CO $$ooai:juser.fz-juelich.de:837935$$pVDB
000837935 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161232$$aForschungszentrum Jülich$$b4$$kFZJ
000837935 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130736$$aForschungszentrum Jülich$$b8$$kFZJ
000837935 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000837935 9141_ $$y2017
000837935 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837935 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000837935 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000837935 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACS APPL MATER INTER : 2015
000837935 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837935 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000837935 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837935 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837935 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000837935 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000837935 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACS APPL MATER INTER : 2015
000837935 920__ $$lyes
000837935 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000837935 980__ $$ajournal
000837935 980__ $$aVDB
000837935 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000837935 980__ $$aUNRESTRICTED