000837939 001__ 837939
000837939 005__ 20210129231447.0
000837939 0247_ $$2doi$$a10.1016/j.actamat.2017.01.022
000837939 0247_ $$2ISSN$$a1359-6454
000837939 0247_ $$2ISSN$$a1873-2453
000837939 0247_ $$2WOS$$aWOS:000397362600017
000837939 0247_ $$2altmetric$$aaltmetric:15822305
000837939 037__ $$aFZJ-2017-06700
000837939 082__ $$a670
000837939 1001_ $$0P:(DE-HGF)0$$aMi, Shao-Bo$$b0$$eCorresponding author
000837939 245__ $$aAtomic-scale structure and formation of antiphase boundaries in α-Li 0.5 Fe 2.5 O 4 thin films on MgAl 2 O 4 (001) substrates
000837939 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2017
000837939 3367_ $$2DRIVER$$aarticle
000837939 3367_ $$2DataCite$$aOutput Types/Journal article
000837939 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1506322515_17751
000837939 3367_ $$2BibTeX$$aARTICLE
000837939 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837939 3367_ $$00$$2EndNote$$aJournal Article
000837939 520__ $$aThe occurrence of antiferromagnetic coupling at antiphase domain boundaries (APBs) of ferromagnetic materials holds potential applications for room-temperature spintronic devices. Here, we report formation mechanism and atomic-scale structure properties of APBs in α-Li0.5Fe2.5O4 thin films on MgAl2O4 (001) substrates investigated by means of aberration-corrected scanning transmission electron microscopy. The APBs in the α-Li0.5Fe2.5O4 films are either conservative or non-conservative. Across the APBs the oxygen sublattice in α-Li0.5Fe2.5O4 is maintained, while the stacking sequence of the cation sublattice is interrupted. The propagation of APBs is found to occur in a complex way within the ferromagnetic films, including the dissociation of APBs and the formation of kinks. Importantly, the density of APBs can be tuned by controlling the thickness of the α-Li0.5Fe2.5O4 films since the APBs bound interfacial dislocations contributing to film-substrate strain relaxation. Our results evidence that the nano-scale APBs in the α-Li0.5Fe2.5O4 films are controllable and stable, which could be promising candidates for applications in nano-spintronic devices.
000837939 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000837939 588__ $$aDataset connected to CrossRef
000837939 7001_ $$0P:(DE-HGF)0$$aZhang, Ru-Yi$$b1
000837939 7001_ $$0P:(DE-Juel1)161232$$aLu, Lu$$b2
000837939 7001_ $$0P:(DE-HGF)0$$aLiu, Ming$$b3
000837939 7001_ $$0P:(DE-HGF)0$$aWang, Hong$$b4
000837939 7001_ $$0P:(DE-Juel1)130736$$aJia, Chun-Lin$$b5
000837939 773__ $$0PERI:(DE-600)2014621-8$$a10.1016/j.actamat.2017.01.022$$gVol. 127, p. 178 - 184$$p178 - 184$$tActa materialia$$v127$$x1359-6454$$y2017
000837939 8564_ $$uhttps://juser.fz-juelich.de/record/837939/files/1-s2.0-S1359645417300320-main.pdf$$yRestricted
000837939 8564_ $$uhttps://juser.fz-juelich.de/record/837939/files/1-s2.0-S1359645417300320-main.gif?subformat=icon$$xicon$$yRestricted
000837939 8564_ $$uhttps://juser.fz-juelich.de/record/837939/files/1-s2.0-S1359645417300320-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000837939 8564_ $$uhttps://juser.fz-juelich.de/record/837939/files/1-s2.0-S1359645417300320-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000837939 8564_ $$uhttps://juser.fz-juelich.de/record/837939/files/1-s2.0-S1359645417300320-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000837939 8564_ $$uhttps://juser.fz-juelich.de/record/837939/files/1-s2.0-S1359645417300320-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000837939 909CO $$ooai:juser.fz-juelich.de:837939$$pVDB
000837939 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161232$$aForschungszentrum Jülich$$b2$$kFZJ
000837939 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130736$$aForschungszentrum Jülich$$b5$$kFZJ
000837939 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000837939 9141_ $$y2017
000837939 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bACTA MATER : 2015
000837939 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837939 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000837939 915__ $$0StatID:(DE-HGF)0600$$2StatID$$aDBCoverage$$bEbsco Academic Search
000837939 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer Review$$bASC
000837939 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837939 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000837939 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837939 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837939 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000837939 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000837939 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bACTA MATER : 2015
000837939 920__ $$lyes
000837939 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000837939 980__ $$ajournal
000837939 980__ $$aVDB
000837939 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000837939 980__ $$aUNRESTRICTED