001     837939
005     20210129231447.0
024 7 _ |a 10.1016/j.actamat.2017.01.022
|2 doi
024 7 _ |a 1359-6454
|2 ISSN
024 7 _ |a 1873-2453
|2 ISSN
024 7 _ |a WOS:000397362600017
|2 WOS
024 7 _ |a altmetric:15822305
|2 altmetric
037 _ _ |a FZJ-2017-06700
082 _ _ |a 670
100 1 _ |a Mi, Shao-Bo
|0 P:(DE-HGF)0
|b 0
|e Corresponding author
245 _ _ |a Atomic-scale structure and formation of antiphase boundaries in α-Li 0.5 Fe 2.5 O 4 thin films on MgAl 2 O 4 (001) substrates
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1506322515_17751
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a The occurrence of antiferromagnetic coupling at antiphase domain boundaries (APBs) of ferromagnetic materials holds potential applications for room-temperature spintronic devices. Here, we report formation mechanism and atomic-scale structure properties of APBs in α-Li0.5Fe2.5O4 thin films on MgAl2O4 (001) substrates investigated by means of aberration-corrected scanning transmission electron microscopy. The APBs in the α-Li0.5Fe2.5O4 films are either conservative or non-conservative. Across the APBs the oxygen sublattice in α-Li0.5Fe2.5O4 is maintained, while the stacking sequence of the cation sublattice is interrupted. The propagation of APBs is found to occur in a complex way within the ferromagnetic films, including the dissociation of APBs and the formation of kinks. Importantly, the density of APBs can be tuned by controlling the thickness of the α-Li0.5Fe2.5O4 films since the APBs bound interfacial dislocations contributing to film-substrate strain relaxation. Our results evidence that the nano-scale APBs in the α-Li0.5Fe2.5O4 films are controllable and stable, which could be promising candidates for applications in nano-spintronic devices.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Zhang, Ru-Yi
|0 P:(DE-HGF)0
|b 1
700 1 _ |a Lu, Lu
|0 P:(DE-Juel1)161232
|b 2
700 1 _ |a Liu, Ming
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Wang, Hong
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Jia, Chun-Lin
|0 P:(DE-Juel1)130736
|b 5
773 _ _ |a 10.1016/j.actamat.2017.01.022
|g Vol. 127, p. 178 - 184
|0 PERI:(DE-600)2014621-8
|p 178 - 184
|t Acta materialia
|v 127
|y 2017
|x 1359-6454
856 4 _ |u https://juser.fz-juelich.de/record/837939/files/1-s2.0-S1359645417300320-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837939/files/1-s2.0-S1359645417300320-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837939/files/1-s2.0-S1359645417300320-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837939/files/1-s2.0-S1359645417300320-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837939/files/1-s2.0-S1359645417300320-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837939/files/1-s2.0-S1359645417300320-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:837939
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)161232
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)130736
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ACTA MATER : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
915 _ _ |a IF >= 5
|0 StatID:(DE-HGF)9905
|2 StatID
|b ACTA MATER : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21