000837941 001__ 837941
000837941 005__ 20210129231447.0
000837941 0247_ $$2doi$$a10.1002/anie.201612121
000837941 0247_ $$2ISSN$$a0044-8249
000837941 0247_ $$2ISSN$$a0570-0833
000837941 0247_ $$2ISSN$$a1433-7851
000837941 0247_ $$2ISSN$$a1521-3773
000837941 0247_ $$2WOS$$aWOS:000407173600031
000837941 0247_ $$2altmetric$$aaltmetric:16378081
000837941 0247_ $$2pmid$$apmid:28194844
000837941 037__ $$aFZJ-2017-06702
000837941 082__ $$a540
000837941 1001_ $$00000-0002-8295-614X$$aKüpers, Michael$$b0
000837941 245__ $$aUnexpected Ge-Ge Contacts in the Two-Dimensional Ge 4 Se 3 Te Phase and Analysis of Their Chemical Cause with the Density of Energy (DOE) Function
000837941 260__ $$aWeinheim$$bWiley-VCH$$c2017
000837941 3367_ $$2DRIVER$$aarticle
000837941 3367_ $$2DataCite$$aOutput Types/Journal article
000837941 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1518772821_14932
000837941 3367_ $$2BibTeX$$aARTICLE
000837941 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000837941 3367_ $$00$$2EndNote$$aJournal Article
000837941 520__ $$aA hexagonal phase in the ternary Ge–Se–Te system with an approximate composition of GeSe0.75Te0.25 has been known since the 1960s but its structure has remained unknown. We have succeeded in growing single crystals by chemical transport as a prerequisite to solve and refine the Ge4Se3Te structure. It consists of layers that are held together by van der Waals type weak chalcogenide–chalcogenide interactions but also display unexpected Ge–Ge contacts, as confirmed by electron microscopy analysis. The nature of the electronic structure of Ge4Se3Te was characterized by chemical bonding analysis, in particular by the newly introduced density of energy (DOE) function. The Ge–Ge bonding interactions serve to hold electrons that would otherwise go into antibonding Ge–Te contacts.
000837941 536__ $$0G:(DE-HGF)POF3-143$$a143 - Controlling Configuration-Based Phenomena (POF3-143)$$cPOF3-143$$fPOF III$$x0
000837941 536__ $$0G:(DE-Juel1)jara0033_20161101$$aQuantum chemistry of chalcogenide nanocrystals for phase-change memories and other applications (jara0033_20161101)$$cjara0033_20161101$$fQuantum chemistry of chalcogenide nanocrystals for phase-change memories and other applications$$x1
000837941 588__ $$aDataset connected to CrossRef
000837941 7001_ $$00000-0002-7946-702X$$aKonze, Philipp M.$$b1
000837941 7001_ $$0P:(DE-HGF)0$$aMaintz, Stefan$$b2
000837941 7001_ $$0P:(DE-HGF)0$$aSteinberg, Simon$$b3
000837941 7001_ $$0P:(DE-HGF)0$$aMio, Antonio M.$$b4
000837941 7001_ $$0P:(DE-HGF)0$$aCojocaru-Mirédin, Oana$$b5
000837941 7001_ $$0P:(DE-HGF)0$$aZhu, Min$$b6
000837941 7001_ $$0P:(DE-HGF)0$$aMüller, Merlin$$b7
000837941 7001_ $$0P:(DE-Juel1)130811$$aLuysberg, Martina$$b8
000837941 7001_ $$0P:(DE-Juel1)130824$$aMayer, Joachim$$b9
000837941 7001_ $$00000-0003-1498-1025$$aWuttig, Matthias$$b10
000837941 7001_ $$0P:(DE-HGF)0$$aDronskowski, Richard$$b11$$eCorresponding author
000837941 773__ $$0PERI:(DE-600)2011836-3$$a10.1002/anie.201612121$$gVol. 56, no. 34, p. 10204 - 10208$$n34$$p10204 - 10208$$tAngewandte Chemie / International edition$$v56$$x1433-7851$$y2017
000837941 8564_ $$uhttps://juser.fz-juelich.de/record/837941/files/K-pers_et_al-2017-Angewandte_Chemie_International_Edition.pdf$$yRestricted
000837941 8564_ $$uhttps://juser.fz-juelich.de/record/837941/files/K-pers_et_al-2017-Angewandte_Chemie_International_Edition.gif?subformat=icon$$xicon$$yRestricted
000837941 8564_ $$uhttps://juser.fz-juelich.de/record/837941/files/K-pers_et_al-2017-Angewandte_Chemie_International_Edition.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000837941 8564_ $$uhttps://juser.fz-juelich.de/record/837941/files/K-pers_et_al-2017-Angewandte_Chemie_International_Edition.jpg?subformat=icon-180$$xicon-180$$yRestricted
000837941 8564_ $$uhttps://juser.fz-juelich.de/record/837941/files/K-pers_et_al-2017-Angewandte_Chemie_International_Edition.jpg?subformat=icon-640$$xicon-640$$yRestricted
000837941 8564_ $$uhttps://juser.fz-juelich.de/record/837941/files/K-pers_et_al-2017-Angewandte_Chemie_International_Edition.pdf?subformat=pdfa$$xpdfa$$yRestricted
000837941 909CO $$ooai:juser.fz-juelich.de:837941$$pVDB
000837941 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130811$$aForschungszentrum Jülich$$b8$$kFZJ
000837941 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130824$$aForschungszentrum Jülich$$b9$$kFZJ
000837941 9131_ $$0G:(DE-HGF)POF3-143$$1G:(DE-HGF)POF3-140$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000837941 9141_ $$y2017
000837941 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000837941 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bANGEW CHEM INT EDIT : 2015
000837941 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000837941 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000837941 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000837941 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000837941 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000837941 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000837941 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000837941 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000837941 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000837941 915__ $$0StatID:(DE-HGF)9910$$2StatID$$aIF >= 10$$bANGEW CHEM INT EDIT : 2015
000837941 920__ $$lyes
000837941 9201_ $$0I:(DE-Juel1)ER-C-1-20170209$$kER-C-1$$lPhysik Nanoskaliger Systeme$$x0
000837941 9201_ $$0I:(DE-82)080012_20140620$$kJARA-HPC$$lJARA - HPC$$x1
000837941 980__ $$ajournal
000837941 980__ $$aVDB
000837941 980__ $$aI:(DE-Juel1)ER-C-1-20170209
000837941 980__ $$aI:(DE-82)080012_20140620
000837941 980__ $$aUNRESTRICTED