001     837941
005     20210129231447.0
024 7 _ |a 10.1002/anie.201612121
|2 doi
024 7 _ |a 0044-8249
|2 ISSN
024 7 _ |a 0570-0833
|2 ISSN
024 7 _ |a 1433-7851
|2 ISSN
024 7 _ |a 1521-3773
|2 ISSN
024 7 _ |a WOS:000407173600031
|2 WOS
024 7 _ |a altmetric:16378081
|2 altmetric
024 7 _ |a pmid:28194844
|2 pmid
037 _ _ |a FZJ-2017-06702
082 _ _ |a 540
100 1 _ |a Küpers, Michael
|0 0000-0002-8295-614X
|b 0
245 _ _ |a Unexpected Ge-Ge Contacts in the Two-Dimensional Ge 4 Se 3 Te Phase and Analysis of Their Chemical Cause with the Density of Energy (DOE) Function
260 _ _ |a Weinheim
|c 2017
|b Wiley-VCH
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1518772821_14932
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a A hexagonal phase in the ternary Ge–Se–Te system with an approximate composition of GeSe0.75Te0.25 has been known since the 1960s but its structure has remained unknown. We have succeeded in growing single crystals by chemical transport as a prerequisite to solve and refine the Ge4Se3Te structure. It consists of layers that are held together by van der Waals type weak chalcogenide–chalcogenide interactions but also display unexpected Ge–Ge contacts, as confirmed by electron microscopy analysis. The nature of the electronic structure of Ge4Se3Te was characterized by chemical bonding analysis, in particular by the newly introduced density of energy (DOE) function. The Ge–Ge bonding interactions serve to hold electrons that would otherwise go into antibonding Ge–Te contacts.
536 _ _ |a 143 - Controlling Configuration-Based Phenomena (POF3-143)
|0 G:(DE-HGF)POF3-143
|c POF3-143
|f POF III
|x 0
536 _ _ |a Quantum chemistry of chalcogenide nanocrystals for phase-change memories and other applications (jara0033_20161101)
|0 G:(DE-Juel1)jara0033_20161101
|c jara0033_20161101
|f Quantum chemistry of chalcogenide nanocrystals for phase-change memories and other applications
|x 1
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Konze, Philipp M.
|0 0000-0002-7946-702X
|b 1
700 1 _ |a Maintz, Stefan
|0 P:(DE-HGF)0
|b 2
700 1 _ |a Steinberg, Simon
|0 P:(DE-HGF)0
|b 3
700 1 _ |a Mio, Antonio M.
|0 P:(DE-HGF)0
|b 4
700 1 _ |a Cojocaru-Mirédin, Oana
|0 P:(DE-HGF)0
|b 5
700 1 _ |a Zhu, Min
|0 P:(DE-HGF)0
|b 6
700 1 _ |a Müller, Merlin
|0 P:(DE-HGF)0
|b 7
700 1 _ |a Luysberg, Martina
|0 P:(DE-Juel1)130811
|b 8
700 1 _ |a Mayer, Joachim
|0 P:(DE-Juel1)130824
|b 9
700 1 _ |a Wuttig, Matthias
|0 0000-0003-1498-1025
|b 10
700 1 _ |a Dronskowski, Richard
|0 P:(DE-HGF)0
|b 11
|e Corresponding author
773 _ _ |a 10.1002/anie.201612121
|g Vol. 56, no. 34, p. 10204 - 10208
|0 PERI:(DE-600)2011836-3
|n 34
|p 10204 - 10208
|t Angewandte Chemie / International edition
|v 56
|y 2017
|x 1433-7851
856 4 _ |u https://juser.fz-juelich.de/record/837941/files/K-pers_et_al-2017-Angewandte_Chemie_International_Edition.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837941/files/K-pers_et_al-2017-Angewandte_Chemie_International_Edition.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837941/files/K-pers_et_al-2017-Angewandte_Chemie_International_Edition.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837941/files/K-pers_et_al-2017-Angewandte_Chemie_International_Edition.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837941/files/K-pers_et_al-2017-Angewandte_Chemie_International_Edition.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837941/files/K-pers_et_al-2017-Angewandte_Chemie_International_Edition.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |p VDB
|o oai:juser.fz-juelich.de:837941
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 8
|6 P:(DE-Juel1)130811
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 9
|6 P:(DE-Juel1)130824
913 1 _ |a DE-HGF
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-140
|0 G:(DE-HGF)POF3-143
|2 G:(DE-HGF)POF3-100
|v Controlling Configuration-Based Phenomena
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b ANGEW CHEM INT EDIT : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF >= 10
|0 StatID:(DE-HGF)9910
|2 StatID
|b ANGEW CHEM INT EDIT : 2015
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)ER-C-1-20170209
|k ER-C-1
|l Physik Nanoskaliger Systeme
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l JARA - HPC
|x 1
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)ER-C-1-20170209
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21