001     837944
005     20210129231448.0
024 7 _ |a 10.1016/j.mrgentox.2017.09.002
|2 doi
024 7 _ |a 1383-5718
|2 ISSN
024 7 _ |a 1388-2120
|2 ISSN
024 7 _ |a 1879-3592
|2 ISSN
024 7 _ |a pmid:28985947
|2 pmid
024 7 _ |a WOS:000413615100006
|2 WOS
024 7 _ |a altmetric:26862182
|2 altmetric
037 _ _ |a FZJ-2017-06705
041 _ _ |a English
082 _ _ |a 570
100 1 _ |a Dahmen, Volker
|0 P:(DE-Juel1)133468
|b 0
|u fzj
245 _ _ |a Induction of the chromosomal translocation t(14;18) by targeting the BCL-2 locus with specific binding I-125-labeled triplex-forming oligonucleotides
260 _ _ |a Amsterdam [u.a.]
|c 2017
|b Elsevier Science
336 7 _ |a article
|2 DRIVER
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1506325782_17752
|2 PUB:(DE-HGF)
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a Journal Article
|0 0
|2 EndNote
520 _ _ |a Triplex-Forming oligonucleotides (TFO) bind sequence-specific to the DNA double helix in-vitro and in-vivo andare a promising tool to manipulate genes or gene regulatory elements. TFO as a carrier molecule for short-rangeparticle emitter such as Auger-Electron-Emitters (AEE) bear the potential to introduce radiation-induced sitespecificcomplex DNA lesions, which are known to induce chromosomal translocations. We studied gene expression,translocation frequency and protein expression in SCL-II cells after transfection with the AEE Iodine-125 (I-125) labeled TFO-BCL2 targeting the human BCL2 gene. The TFO-BCL2 binds to the BCL2 gene in closeproximity to a known major-breakage-region (mbr). SCL-II cells were transfected with I-125 labeled TFO andstored for decay accumulation. Monitoring of BCL2 translocations was done with the Fluorescence-In-Situ-Hybridization (FISH) method. The utilized FISH probes were designed to detect a t(14;18) translocation of theBCL2 gene, which is a common translocation leading to an overexpression of BCL2 protein. Analysis of BCL2gene expression levels was done via quantitative Real-Time PCR. Verification of gene expression on the proteinlevel was analyzed by Western blotting. The relative gene expression of BCL2 in I-125-TFO-BCL2 transfectedcells showed a significant up-regulation when compared to controls. Analysis of the BCL2 t(14;18) translocationfrequency revealed a significant 1.8- to 2-fold increase when compared to control cells. This 2-fold increase wasnot reflected on the protein level. We conclude that I-125 decays within the BCL2 gene facilitate the t(14;18)chromosomal translocation in the SCL-II cells and that the increased frequency contributes to the observedoverall enhanced BCL2 gene expression.
536 _ _ |a 899 - ohne Topic (POF3-899)
|0 G:(DE-HGF)POF3-899
|c POF3-899
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
650 2 7 |a Biology
|0 V:(DE-MLZ)SciArea-160
|2 V:(DE-HGF)
|x 0
700 1 _ |a Schmitz, Sabine
|0 P:(DE-Juel1)133346
|b 1
|u fzj
700 1 _ |a Kriehuber, Ralf
|0 P:(DE-Juel1)133469
|b 2
|e Corresponding author
773 _ _ |a 10.1016/j.mrgentox.2017.09.002
|g Vol. 823, p. 58 - 64
|0 PERI:(DE-600)2210272-3
|p 58 - 64
|t Mutation research / Genetic toxicology and environmental mutagenesis
|v 823
|y 2017
|x 1383-5718
856 4 _ |u https://juser.fz-juelich.de/record/837944/files/1-s2.0-S1383571817301511-main.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837944/files/1-s2.0-S1383571817301511-main.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837944/files/1-s2.0-S1383571817301511-main.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837944/files/1-s2.0-S1383571817301511-main.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837944/files/1-s2.0-S1383571817301511-main.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/837944/files/1-s2.0-S1383571817301511-main.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:837944
|p VDB
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)133468
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)133346
910 1 _ |a Forschungszentrum Jülich
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)133469
913 1 _ |a DE-HGF
|b Programmungebundene Forschung
|l ohne Programm
|1 G:(DE-HGF)POF3-890
|0 G:(DE-HGF)POF3-899
|2 G:(DE-HGF)POF3-800
|v ohne Topic
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
914 1 _ |y 2017
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b MUTAT RES-GEN TOX EN : 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0600
|2 StatID
|b Ebsco Academic Search
915 _ _ |a Peer Review
|0 StatID:(DE-HGF)0030
|2 StatID
|b ASC
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1030
|2 StatID
|b Current Contents - Life Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)S-US-20090406
|k S-US
|l Sicherheit und Strahlenschutz, Umgebungsüberwachung,Strahlenbiologie
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)S-US-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21